[Journal logo]

Volume 68 
Part 1 
Page o31  
January 2012  

Received 20 November 2011
Accepted 30 November 2011
Online 7 December 2011

Key indicators
Single-crystal X-ray study
T = 297 K
Mean [sigma](C-C) = 0.006 Å
R = 0.083
wR = 0.186
Data-to-parameter ratio = 15.3
Details
Open access

(2,4,6-Trimethylphenyl)boronic acid-triphenylphosphine oxide (1/1)

aUniversitatea Babes-Bolyai, Facultatea de Chimie si Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania
Correspondence e-mail: ciprian.rat@ubbcluj.ro

In the crystal structure of the title compound, C9H13BO2·C18H15OP, there are O-H...O hydrogen bonds between the O atom of triphenylphosphine oxide and one hydroxy group of the boronic acid. Boronic acid molecules form inversion-related hydrogen-bonded dimers in an R22(8) motif. The structure is consolidated by intermolecular C-H...O bonds and C-H...[pi] interactions.

Related literature

For applications of boronic acids, see: Suzuki (2011[Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722-6737.]); Yang et al. (2011[Yang, X., Chen, Y., Jin, S. & Binghe, W. (2011). Artificial Receptors for Chemical Sensors, edited by V. Mirsky & A. Yatsimirsky, pp. 169-190. Weinheim: Wiley-VCH.]); Furukawa & Yaghi (2009[Furukawa, H. & Yaghi, O. M. (2009). J. Am. Chem. Soc. 131, 8875-8883.]). For recently reported structures of triphenylphosphine oxide and triphenylphosphine oxide hemihydrate, see: Sivaramkrishna et al. (2007[Sivaramkrishna, A., Su, H. & Moss, J. R. (2007). Private communication (refcode TPEPHO13). CCDC, Cambridge, England.]); Ng (2009[Ng, S. W. (2009). Acta Cryst. E65, o1431.]). For structures of related boronic acids, see: Filthaus et al. (2008[Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201-1207.]), Cyranski et al. (2008[Cyranski, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzynski, A. (2008). J. Phys. Org. Chem. 21, 472-482.]); Rettig & Trotter (1977[Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13BO2·C18H15OP

  • Mr = 442.27

  • Monoclinic, P 21 /c

  • a = 12.218 (4) Å

  • b = 12.339 (4) Å

  • c = 16.983 (5) Å

  • [beta] = 95.651 (5)°

  • V = 2548.0 (14) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.13 mm-1

  • T = 297 K

  • 0.52 × 0.45 × 0.42 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.947

  • 23787 measured reflections

  • 4486 independent reflections

  • 3727 reflections with I > 2[sigma](I)

  • Rint = 0.052

Refinement
  • R[F2 > 2[sigma](F2)] = 0.083

  • wR(F2) = 0.186

  • S = 1.19

  • 4486 reflections

  • 294 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.40 e Å-3

  • [Delta][rho]min = -0.32 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C19-C24 benzene ring.

D-H...A D-H H...A D...A D-H...A
O2-H2A...O1 0.82 1.84 2.645 (3) 168
O3-H3A...O2i 0.82 1.99 2.795 (4) 169
C4-H4...O1ii 0.93 2.41 3.326 (4) 167
C6-H6...Cg4 0.93 2.88 3.728 (4) 152
C15-H15...Cg4iii 0.93 2.69 3.602 (5) 168
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2368 ).


Acknowledgements

This work was supported by the National University Research Council (CNCS) of Romania (project TE295/2010). We thank Dr Albert Soran for the crystallographic measurements and data refinement.

References

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Cyranski, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzynski, A. (2008). J. Phys. Org. Chem. 21, 472-482.
Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201-1207.  [CSD] [CrossRef] [PubMed] [ChemPort]
Furukawa, H. & Yaghi, O. M. (2009). J. Am. Chem. Soc. 131, 8875-8883.  [ISI] [CrossRef] [PubMed] [ChemPort]
Ng, S. W. (2009). Acta Cryst. E65, o1431.  [CSD] [CrossRef] [details]
Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.  [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Sivaramkrishna, A., Su, H. & Moss, J. R. (2007). Private communication (refcode TPEPHO13). CCDC, Cambridge, England.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722-6737.  [ISI] [CrossRef] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Yang, X., Chen, Y., Jin, S. & Binghe, W. (2011). Artificial Receptors for Chemical Sensors, edited by V. Mirsky & A. Yatsimirsky, pp. 169-190. Weinheim: Wiley-VCH.


Acta Cryst (2012). E68, o31  [ doi:10.1107/S1600536811051609 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.