[Journal logo]

Volume 68 
Part 1 
Page o234  
January 2012  

Received 29 November 2011
Accepted 14 December 2011
Online 23 December 2011

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.006 Å
R = 0.065
wR = 0.132
Data-to-parameter ratio = 12.8
Details
Open access

2-(4-Chloro-3,3,7-trimethyl-2,3-dihydro-1H-indol-2-ylidene)-2-cyanoacetamide

aThe School of Chemistry, The University of Manchester, Manchester M13 9PL, England,bDepartment of Chemistry, Faculty of Science, University of Urmia, Urmia 57153-165, Iran, and cDepartment of Chemical Engineering, University of Urmia, Urmia 57153-165, Iran
Correspondence e-mail: mmbaradarani@yahoo.com

Reaction of 2-(4-chloro-3,3,7-trimethyl-2,3-dihydro-1H-indol-2-ylidene)propanedial with hydroxylamine gives the title compound, C14H14ClN3O, in which the ring N atom is essentially planar [sum of angles around the ring N atom = 361°], indicating conjugation with the 2-cyanoacrylamide unit. The orientation of the acetamide group arises from intramolecular hydrogen bonding between the indole N-H and carbonyl groups. In the crystal, inversion-related acetamide groups form N-H...O hydrogen-bonded dimers in graph-set R22(8) motifs, whilst dimers are also formed by pairs of amine-nitrile N-H...N hydrogen bonds in R22(12) motifs. These interactions together generate ribbons that propagate along the b-axis direction.

Related literature

For background information on the chemistry of related compounds, see: Baradarani et al. (2006[Baradarani, M. M., Afghan, A., Zebarjadi, F., Hasanzadeh, K. & Joule, J. A. (2006). J. Heterocycl. Chem. 43, 1591-1596.]); Rashidi et al. (2009[Rashidi, A., Afghan, A., Baradarani, M. M. & Joule, J. A. (2009). J. Heterocycl. Chem. 46, 428-431.], 2011[Rashidi, A., Baradarani, M. M. & Joule, J. A. (2011). Arkivoc, ii, 252-259.]). For related structures, see: Helliwell et al. (2010[Helliwell, M., Afghan, A., Keshvari, F., Baradarani, M. M. & Joule, J. A. (2010). Acta Cryst. E66, o112.], 2012[Helliwell, M., Baradarani, M. M., Mohammadnejadaghdam, R., Afghan, A., & Joule, J. A. (2012). Acta Cryst. E68, o233.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClN3O

  • Mr = 275.73

  • Triclinic, [P \overline 1]

  • a = 8.226 (2) Å

  • b = 9.282 (3) Å

  • c = 9.744 (3) Å

  • [alpha] = 92.124 (5)°

  • [beta] = 104.766 (5)°

  • [gamma] = 105.294 (4)°

  • V = 689.5 (3) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.27 mm-1

  • T = 100 K

  • 0.58 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 3384 measured reflections

  • 2389 independent reflections

  • 1549 reflections with I > 2[sigma](I)

  • Rint = 0.065

Refinement
  • R[F2 > 2[sigma](F2)] = 0.065

  • wR(F2) = 0.132

  • S = 1.01

  • 2389 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.45 e Å-3

  • [Delta][rho]min = -0.38 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1N...O1 0.93 (5) 1.89 (5) 2.610 (4) 132 (4)
N3-H3M...O1i 0.83 (5) 2.11 (5) 2.931 (5) 176 (5)
N3-H3N...N2ii 0.85 (4) 2.24 (4) 3.065 (5) 163 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2373 ).


Acknowledgements

The authors are grateful to the University of Urmia for financial support of this work.

References

Baradarani, M. M., Afghan, A., Zebarjadi, F., Hasanzadeh, K. & Joule, J. A. (2006). J. Heterocycl. Chem. 43, 1591-1596.  [CrossRef] [ChemPort]
Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.  [CrossRef] [ISI] [details]
Helliwell, M., Afghan, A., Keshvari, F., Baradarani, M. M. & Joule, J. A. (2010). Acta Cryst. E66, o112.  [CrossRef] [details]
Helliwell, M., Baradarani, M. M., Mohammadnejadaghdam, R., Afghan, A., & Joule, J. A. (2012). Acta Cryst. E68, o233.  [CrossRef] [details]
Rashidi, A., Afghan, A., Baradarani, M. M. & Joule, J. A. (2009). J. Heterocycl. Chem. 46, 428-431.  [CrossRef] [ChemPort]
Rashidi, A., Baradarani, M. M. & Joule, J. A. (2011). Arkivoc, ii, 252-259.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]


Acta Cryst (2012). E68, o234  [ doi:10.1107/S1600536811053918 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.