supplementary materials


pk2376 scheme

Acta Cryst. (2012). E68, o214    [ doi:10.1107/S1600536811054328 ]

Chlorido{2-[(dimethylamino)methyl]phenyl-[kappa]2N,C1}tellurium

P. Rakesh, H. B. Singh and R. J. Butcher

Abstract top

The crystal structure of the title compound, C9H12ClNTe, contains isolated molecules with no close Te...Cl intermolecular contacts and has the same composition as a previously published structure [Engman et al. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 285-292]. However, in this case, the compound has crystallized in a centrosymmetric space group, unlike the previously published structure which contained enantiomerically pure chiral molecules. In all other aspects, the metrical parameters are similar. The molecules with a T-shaped coordination environment about the Te atom are linked into dimers by C-H...Cl interactions.

Comment top

Attempts to synthesize protonated bis[2-(dimethylaminomethyl)phenyl]ditelluride resulted in the formation of 2-(N,N-dimethylaminomethyl)phenyl)tellurenyl chloride, C9H12ClNTe, (1) a compound which had been previously prepared via a different method (Singh et al., 1990). The structure of C9H12ClNTe contains isolated molecules with no close Te···Cl intermolecular contacts, and is chemically related to a previously published structure (Engman, et al., 2004), even though it had been prepared by the same method as the title compound. However, in this case the compound has crystallized in a centrosymmetric space group, unlike the previously published structure (Engman, et al., 2004) which contained enantiomerically pure, chiral molecules. In all other aspects the metrical parameters are similar. The molecules arelinked into dimers by C—H···Cl interactions.

Related literature top

For a related structure, see: Engman et al. (2004). For related syntheses, see: Singh et al. (1990); Kaur et al. (1995).

Experimental top

A stirred solution of bis[2-(dimethylaminomethyl)phenyl]ditelluride (Kaur et al., 1995) (0.5 g, 0.94 mmol) in diethylether (10 ml) was treated with HCl (3 ml in 20 ml distilled water). The reaction mixture was further stirred for 10 min. The resulting reaction mixture was evaporated to one third of its original volume and ethanol (5 ml) was added to get a yellow solid. It was redissolved in ethanol and stored in the refrigerator to get yellow needles of X-ray quality crystals. Yield 0.2 g, 35% mp 121°C (lit value 121°C). Anal. Calcd for C9H12ClTe: C, 36.37; H, 4.07; N, 4.37. Found C, 36.44; H, 4.04; N, 4.66.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 - 0.97 Å [Uiso(H) = 1.2Ueq(CH, CH2) [Uiso(H) = 1.5Ueq(CH3)].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of the contents of the asymmetric unit of C9H12ClNTe. Atomic displacement ellipsoids are drawn at the 30% level.
[Figure 2] Fig. 2. The molecular packing for C9H12ClNTe viewed down the c axis. C—H···Cl secondary interactions are shown by dashed lines.
Chlorido{2-[(dimethylamino)methyl]phenyl-κ2N,C1}tellurium top
Crystal data top
C9H12ClNTeF(000) = 568
Mr = 297.25Dx = 1.836 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3931 reflections
a = 6.4514 (6) Åθ = 5.1–32.6°
b = 7.0287 (7) ŵ = 2.96 mm1
c = 23.847 (2) ÅT = 295 K
β = 95.967 (9)°Irregular plate, pale yellow
V = 1075.49 (17) Å30.45 × 0.36 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3587 independent reflections
Radiation source: fine-focus sealed tube2998 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 5.1°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 610
Tmin = 0.504, Tmax = 1.000l = 3534
7778 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0327P)2 + 1.2847P]
where P = (Fo2 + 2Fc2)/3
3587 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 2.25 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
C9H12ClNTeV = 1075.49 (17) Å3
Mr = 297.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.4514 (6) ŵ = 2.96 mm1
b = 7.0287 (7) ÅT = 295 K
c = 23.847 (2) Å0.45 × 0.36 × 0.12 mm
β = 95.967 (9)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3587 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2998 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 1.000Rint = 0.023
7778 measured reflectionsθmax = 32.7°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.096Δρmax = 2.25 e Å3
S = 1.20Δρmin = 0.98 e Å3
3587 reflectionsAbsolute structure: ?
111 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te0.58681 (4)0.01772 (4)0.423777 (10)0.03896 (9)
Cl0.29601 (17)0.23269 (17)0.41307 (5)0.0537 (3)
N0.8374 (5)0.2560 (4)0.41417 (13)0.0372 (6)
C10.5512 (6)0.0787 (5)0.33640 (14)0.0347 (7)
C20.3769 (6)0.0346 (6)0.29976 (16)0.0413 (8)
H2A0.26490.02910.31270.050*
C30.3712 (7)0.0865 (7)0.24370 (18)0.0505 (10)
H3A0.25430.05710.21900.061*
C40.5367 (8)0.1816 (6)0.22353 (17)0.0515 (10)
H4A0.53110.21540.18570.062*
C50.7099 (7)0.2255 (5)0.26028 (16)0.0456 (9)
H5A0.82120.28990.24710.055*
C60.7191 (6)0.1741 (5)0.31665 (15)0.0366 (7)
C70.9058 (6)0.2144 (6)0.35786 (15)0.0416 (8)
H7A0.99820.10520.36040.050*
H7B0.98160.32250.34500.050*
C80.7367 (8)0.4460 (6)0.4157 (2)0.0588 (12)
H8A0.83730.54330.41040.088*
H8B0.68370.46360.45150.088*
H8C0.62400.45390.38610.088*
C91.0127 (6)0.2409 (7)0.45859 (18)0.0538 (11)
H9A1.11190.33970.45370.081*
H9B1.07860.11910.45620.081*
H9C0.96200.25390.49480.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.03675 (13)0.04765 (15)0.03311 (13)0.00064 (11)0.00659 (8)0.00140 (11)
Cl0.0484 (5)0.0601 (6)0.0536 (6)0.0112 (5)0.0102 (4)0.0036 (5)
N0.0340 (14)0.0375 (15)0.0403 (16)0.0027 (12)0.0043 (12)0.0043 (13)
C10.0397 (17)0.0331 (15)0.0320 (16)0.0061 (14)0.0069 (13)0.0021 (13)
C20.0409 (18)0.0428 (19)0.0399 (19)0.0057 (16)0.0039 (14)0.0059 (16)
C30.057 (2)0.050 (2)0.042 (2)0.014 (2)0.0078 (18)0.0079 (18)
C40.079 (3)0.039 (2)0.0348 (19)0.010 (2)0.0016 (19)0.0035 (16)
C50.066 (3)0.0367 (18)0.0357 (19)0.0026 (18)0.0112 (17)0.0009 (15)
C60.0438 (18)0.0320 (16)0.0348 (17)0.0002 (14)0.0071 (14)0.0014 (14)
C70.0404 (18)0.049 (2)0.0364 (18)0.0033 (16)0.0097 (14)0.0003 (16)
C80.071 (3)0.043 (2)0.061 (3)0.007 (2)0.000 (2)0.012 (2)
C90.042 (2)0.074 (3)0.043 (2)0.007 (2)0.0038 (17)0.004 (2)
Geometric parameters (Å, °) top
Te—C12.116 (3)C4—H4A0.9300
Te—N2.355 (3)C5—C61.387 (5)
Te—Cl2.5657 (11)C5—H5A0.9300
N—C91.471 (5)C6—C71.500 (5)
N—C71.486 (5)C7—H7A0.9700
N—C81.487 (5)C7—H7B0.9700
C1—C21.385 (5)C8—H8A0.9600
C1—C61.397 (5)C8—H8B0.9600
C2—C31.383 (6)C8—H8C0.9600
C2—H2A0.9300C9—H9A0.9600
C3—C41.387 (7)C9—H9B0.9600
C3—H3A0.9300C9—H9C0.9600
C4—C51.382 (6)
C1—Te—N76.45 (13)C6—C5—H5A119.8
C1—Te—Cl92.14 (10)C5—C6—C1119.7 (4)
N—Te—Cl168.59 (8)C5—C6—C7122.4 (3)
C9—N—C7111.0 (3)C1—C6—C7117.9 (3)
C9—N—C8110.7 (3)N—C7—C6109.6 (3)
C7—N—C8111.7 (3)N—C7—H7A109.7
C9—N—Te111.3 (3)C6—C7—H7A109.7
C7—N—Te102.7 (2)N—C7—H7B109.7
C8—N—Te109.3 (3)C6—C7—H7B109.7
C2—C1—C6120.1 (3)H7A—C7—H7B108.2
C2—C1—Te125.0 (3)N—C8—H8A109.5
C6—C1—Te114.9 (3)N—C8—H8B109.5
C3—C2—C1119.3 (4)H8A—C8—H8B109.5
C3—C2—H2A120.4N—C8—H8C109.5
C1—C2—H2A120.4H8A—C8—H8C109.5
C2—C3—C4121.2 (4)H8B—C8—H8C109.5
C2—C3—H3A119.4N—C9—H9A109.5
C4—C3—H3A119.4N—C9—H9B109.5
C5—C4—C3119.3 (4)H9A—C9—H9B109.5
C5—C4—H4A120.4N—C9—H9C109.5
C3—C4—H4A120.4H9A—C9—H9C109.5
C4—C5—C6120.5 (4)H9B—C9—H9C109.5
C4—C5—H5A119.8
C1—Te—N—C9152.7 (3)C2—C3—C4—C50.2 (6)
Cl—Te—N—C9154.3 (3)C3—C4—C5—C60.4 (6)
C1—Te—N—C733.9 (2)C4—C5—C6—C10.5 (6)
Cl—Te—N—C735.5 (5)C4—C5—C6—C7178.5 (4)
C1—Te—N—C884.8 (3)C2—C1—C6—C50.3 (5)
Cl—Te—N—C883.2 (5)Te—C1—C6—C5178.4 (3)
N—Te—C1—C2160.8 (3)C2—C1—C6—C7178.7 (3)
Cl—Te—C1—C218.9 (3)Te—C1—C6—C72.6 (4)
N—Te—C1—C617.8 (2)C9—N—C7—C6163.4 (3)
Cl—Te—C1—C6162.5 (3)C8—N—C7—C672.6 (4)
C6—C1—C2—C30.1 (5)Te—N—C7—C644.4 (3)
Te—C1—C2—C3178.4 (3)C5—C6—C7—N145.9 (3)
C1—C2—C3—C40.0 (6)C1—C6—C7—N35.1 (5)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···Cli0.962.893.822 (5)163.
Symmetry codes: (i) −x+1, −y, −z+1.
Table 1
Selected geometric parameters (Å)
top
Te—C12.116 (3)Te—Cl2.5657 (11)
Te—N2.355 (3)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C9—H9C···Cli0.962.893.822 (5)163.
Symmetry codes: (i) −x+1, −y, −z+1.
Acknowledgements top

RJB acknowledges the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. HBS acknowledges the DST (New Delhi) for funding. PR acknowledges the CSIR for a fellowship.

references
References top

Engman, L., Wojton, A., Oleksyn, B. J. & Sliwinski, J. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 285–292.

Kaur, R., Singh, H. B. & Butcher, R. J. (1995). Organometallics, 14, 4755–4763.

Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Singh, H. B., Sudha, N., West, A. A. & Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907–913.