supplementary materials


pv2493 scheme

Acta Cryst. (2012). E68, o219    [ doi:10.1107/S1600536811054171 ]

4-Chloro-1-methylindoline-2,3-dione

J. G. Yu, W. Tang, D. C. Wang and H. Xu

Abstract top

The title molecule, C9H6ClNO2, is essentially planar; the maximum deviation of the indoline ring system is 0.027 (3) Å and the substituents do not deviate by more than 0.075 (2) Å from this plane. Intermolecular C-H...O hydrogen bonds consolidate the crystal structure.

Comment top

As a part of our studies on the synthesis and structures of isatin derivatives (Liu et al., 2011), the title compound was synthesized and its structure is now reported in this article

The title molecule (Fig. 1) is essentially planar with the maximum deviation of C7 atom from the mean plane of the indoline ring (C1—C5/N/C6—C8) is 0.027 (3) A°. The substituents do not deviate more than 0.075 (2) Å from this plane. In the crystal structure, intermolecular and intramolecular C—H···O hydrogen bonds consolidate the crystal packing (Fig. 2 & Tab. 1).

Related literature top

For the preparation of the title compound, see: Bouhfid et al. (2005). For a related crystal structure and background to isatin derivatives, see: Liu et al. (2011).

Experimental top

The title compound was synthesized according to a reported procedure (Bouhfid et al.2005). 4-Chloroisatin (1.81 g, 0.01 mol) was reacted with iodomethane (2.84 g, 0.02 mol) in the presence of K2CO3 (2.76 g, 0.02 mol) and tetrabutylammonium bromide (0.32 g, 0.001 mol) in DMF (60 ml). After 12 h stirring at room temperature, the precipitate was removed by filtration and purified by recrystallization from ethanol (m.p. 464–467 K; yield 73%). Yellow crystals of the title compound were obtained by slow evaporation from ethanol at room temperature.

Refinement top

All H atoms were placed geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(aryl C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
4-Chloro-1-methylindoline-2,3-dione top
Crystal data top
C9H6ClNO2F(000) = 400
Mr = 195.60Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.4890 (15) Åθ = 9–12°
b = 14.825 (3) ŵ = 0.43 mm1
c = 7.3140 (15) ÅT = 293 K
β = 90.27 (3)°Block, yellow
V = 812.0 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
965 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
graphiteθmax = 25.5°, θmin = 2.7°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.919, Tmax = 0.958l = 08
1607 measured reflections3 standard reflections every 200 reflections
1485 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1485 reflectionsΔρmax = 0.28 e Å3
119 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (4)
Crystal data top
C9H6ClNO2V = 812.0 (3) Å3
Mr = 195.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4890 (15) ŵ = 0.43 mm1
b = 14.825 (3) ÅT = 293 K
c = 7.3140 (15) Å0.20 × 0.10 × 0.10 mm
β = 90.27 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
965 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.919, Tmax = 0.958θmax = 25.5°
1607 measured reflections3 standard reflections every 200 reflections
1485 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.155Δρmax = 0.28 e Å3
S = 1.00Δρmin = 0.28 e Å3
1485 reflectionsAbsolute structure: ?
119 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.19910 (14)0.55890 (7)0.16100 (16)0.0561 (4)
N0.3254 (4)0.88873 (19)0.2061 (4)0.0430 (8)
O10.6058 (4)0.87503 (19)0.3282 (5)0.0676 (10)
C10.1324 (5)0.6685 (2)0.1324 (5)0.0425 (9)
O20.5204 (4)0.68317 (18)0.3142 (4)0.0606 (9)
C20.0323 (5)0.6886 (3)0.0589 (5)0.0490 (11)
H2A0.10850.64230.02300.059*
C30.0848 (5)0.7773 (3)0.0381 (6)0.0540 (12)
H3A0.19820.78970.00780.065*
C40.0265 (5)0.8479 (3)0.0835 (6)0.0484 (10)
H4A0.00970.90740.06770.058*
C50.1921 (5)0.8279 (2)0.1525 (5)0.0375 (9)
C60.4690 (5)0.8435 (3)0.2721 (6)0.0470 (10)
C70.4229 (5)0.7422 (2)0.2603 (5)0.0412 (9)
C80.2447 (4)0.7390 (2)0.1784 (5)0.0370 (9)
C90.3123 (5)0.9847 (3)0.1887 (7)0.0587 (12)
H9A0.42001.01210.23380.088*
H9B0.21261.00600.25840.088*
H9C0.29571.00030.06240.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0597 (7)0.0389 (6)0.0696 (8)0.0050 (5)0.0120 (5)0.0014 (5)
N0.0351 (18)0.0338 (17)0.060 (2)0.0011 (14)0.0083 (15)0.0031 (16)
O10.0420 (17)0.0512 (18)0.109 (3)0.0072 (14)0.0290 (17)0.0120 (18)
C10.043 (2)0.042 (2)0.043 (2)0.0048 (17)0.0040 (18)0.0005 (18)
O20.0446 (17)0.0455 (17)0.092 (2)0.0107 (13)0.0241 (16)0.0012 (16)
C20.036 (2)0.063 (3)0.048 (2)0.016 (2)0.0084 (19)0.003 (2)
C30.034 (2)0.077 (3)0.051 (2)0.000 (2)0.0105 (19)0.006 (2)
C40.036 (2)0.056 (2)0.052 (2)0.0071 (19)0.0058 (18)0.006 (2)
C50.033 (2)0.039 (2)0.041 (2)0.0036 (16)0.0057 (16)0.0009 (17)
C60.033 (2)0.043 (2)0.065 (3)0.0051 (18)0.0069 (19)0.005 (2)
C70.034 (2)0.037 (2)0.052 (2)0.0065 (17)0.0039 (18)0.0021 (19)
C80.0305 (19)0.035 (2)0.045 (2)0.0036 (15)0.0068 (17)0.0031 (17)
C90.057 (3)0.035 (2)0.083 (3)0.002 (2)0.006 (2)0.001 (2)
Geometric parameters (Å, °) top
Cl—C11.712 (4)C3—C41.378 (6)
N—C61.354 (5)C3—H3A0.9300
N—C51.400 (4)C4—C51.369 (5)
N—C91.431 (5)C4—H4A0.9300
O1—C61.197 (4)C5—C81.389 (5)
C1—C21.376 (5)C6—C71.544 (5)
C1—C81.382 (5)C7—C81.461 (5)
O2—C71.204 (4)C9—H9A0.9600
C2—C31.381 (6)C9—H9B0.9600
C2—H2A0.9300C9—H9C0.9600
C6—N—C5110.2 (3)C8—C5—N111.8 (3)
C6—N—C9125.2 (3)O1—C6—N127.3 (4)
C5—N—C9124.6 (3)O1—C6—C7126.1 (4)
C2—C1—C8118.3 (4)N—C6—C7106.6 (3)
C2—C1—Cl120.9 (3)O2—C7—C8131.4 (4)
C8—C1—Cl120.7 (3)O2—C7—C6123.6 (3)
C1—C2—C3120.2 (4)C8—C7—C6104.9 (3)
C1—C2—H2A119.9C1—C8—C5120.8 (3)
C3—C2—H2A119.9C1—C8—C7132.7 (3)
C4—C3—C2121.7 (4)C5—C8—C7106.5 (3)
C4—C3—H3A119.2N—C9—H9A109.5
C2—C3—H3A119.2N—C9—H9B109.5
C5—C4—C3118.0 (4)H9A—C9—H9B109.5
C5—C4—H4A121.0N—C9—H9C109.5
C3—C4—H4A121.0H9A—C9—H9C109.5
C4—C5—C8120.8 (4)H9B—C9—H9C109.5
C4—C5—N127.4 (4)
C8—C1—C2—C32.2 (6)N—C6—C7—O2177.4 (4)
Cl—C1—C2—C3179.5 (3)O1—C6—C7—C8178.4 (4)
C1—C2—C3—C42.3 (6)N—C6—C7—C81.3 (4)
C2—C3—C4—C50.7 (6)C2—C1—C8—C50.6 (6)
C3—C4—C5—C81.0 (6)Cl—C1—C8—C5178.9 (3)
C3—C4—C5—N179.6 (4)C2—C1—C8—C7178.7 (4)
C6—N—C5—C4178.3 (4)Cl—C1—C8—C73.0 (6)
C9—N—C5—C43.1 (6)C4—C5—C8—C11.0 (6)
C6—N—C5—C81.1 (5)N—C5—C8—C1179.5 (3)
C9—N—C5—C8177.4 (4)C4—C5—C8—C7177.5 (4)
C5—N—C6—O1179.5 (4)N—C5—C8—C71.9 (4)
C9—N—C6—O10.9 (7)O2—C7—C8—C11.7 (8)
C5—N—C6—C70.2 (4)C6—C7—C8—C1179.8 (4)
C9—N—C6—C7178.7 (4)O2—C7—C8—C5176.6 (4)
O1—C6—C7—O23.0 (7)C6—C7—C8—C51.9 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.583.323 (5)137
C3—H3A···O2i0.932.503.424 (5)170
C9—H9A···O10.962.562.915 (5)102
C9—H9A···O2ii0.962.603.198 (5)121
Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.583.323 (5)137
C3—H3A···O2i0.932.503.424 (5)170
C9—H9A···O10.962.562.915 (5)102
C9—H9A···O2ii0.962.603.198 (5)121
Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2.
Acknowledgements top

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

references
References top

Bouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949–2955.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Liu, H., Fan, D., Wang, D. & Ou-yang, P.-K. (2011). Acta Cryst. E67, o3427.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.