[Journal logo]

Volume 68 
Part 1 
Pages m62-m63  
January 2012  

Received 9 December 2011
Accepted 12 December 2011
Online 17 December 2011

Key indicators
Single-crystal X-ray study
T = 150 K
Mean [sigma](C-C) = 0.004 Å
R = 0.022
wR = 0.055
Data-to-parameter ratio = 18.8
Details
Open access

(N-Ethyl-N-phenyldithiocarbamato-[kappa]S)triphenyltin(IV)

aEnvironmental Health Programme, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia,bSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia,cDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: edward.tiekink@gmail.com

The title compound, [Sn(C6H5)3(C9H10NS2)], has two independent molecules in the asymmetric unit and each features a tetrahedrally coordinated SnIV atom as the dithiocarbamate ligand coordinates in a monodentate fashion. As the non-coordinating thione S atom is proximate to the Sn atom [Sn...S(thione) = 3.1477 (6) and 2.9970 (5) Å for the independent molecules], distortions from the ideal geometry are evident [the widest angle being 120.48 (5)°]. The most notable feature of the crystal packing is the formation of C-H...[pi] interactions that lead to the formation of supramolecular layers parallel to ([\overline{3}]2[\overline{1}]).

Related literature

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). For the recently reported n-butyl derivative, see: Kamaludin et al. (2011[Kamaludin, N. F., Baba, I., Awang, N., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m555-m556.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C9H10NS2)]

  • Mr = 546.29

  • Triclinic, [P \overline 1]

  • a = 9.6973 (2) Å

  • b = 12.2804 (2) Å

  • c = 22.8523 (4) Å

  • [alpha] = 90.588 (2)°

  • [beta] = 101.573 (2)°

  • [gamma] = 110.687 (2)°

  • V = 2484.39 (8) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 1.21 mm-1

  • T = 150 K

  • 0.30 × 0.24 × 0.19 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.748, Tmax = 0.795

  • 62467 measured reflections

  • 10558 independent reflections

  • 9633 reflections with I > 2[sigma](I)

  • Rint = 0.038

Refinement
  • R[F2 > 2[sigma](F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.00

  • 10558 reflections

  • 561 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.55 e Å-3

  • [Delta][rho]min = -0.44 e Å-3

Table 1
Selected bond lengths (Å)

Sn1-C10 2.1339 (19)
Sn1-C16 2.1541 (19)
Sn1-C22 2.1210 (18)
Sn1-S1 2.4539 (5)
Sn2-C37 2.1413 (18)
Sn2-C43 2.1605 (19)
Sn2-C49 2.1379 (19)
Sn2-S3 2.4662 (5)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, and Cg3 are the centroids of the C16-C21, C37-C42 and C43-C48 benzene rings, respectively.

D-H...A D-H H...A D...A D-H...A
C9-H9...Cg1i 0.95 2.72 3.630 (3) 160
C25-H25...Cg2ii 0.95 2.90 3.639 (3) 135
C32-H32...Cg3iii 0.95 2.92 3.824 (2) 160
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii) -x+2, -y+2, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2044 ).


Acknowledgements

The authors thank the Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092-2010) and the Universiti Putra Malaysia for support.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  [CrossRef] [details]
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.  [CrossRef] [PubMed] [ChemPort]
Kamaludin, N. F., Baba, I., Awang, N., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m555-m556.  [CSD] [CrossRef] [details]
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.  [ISI] [CrossRef] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2012). E68, m62-m63   [ doi:10.1107/S1600536811053591 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.