[Journal logo]

Volume 68 
Part 1 
Pages i3-i4  
January 2012  

Received 14 November 2011
Accepted 2 December 2011
Online 7 December 2011

Key indicators
Single-crystal X-ray study
T = 296 K
Mean [sigma](O-B) = 0.009 Å
Disorder in main residue
R = 0.040
wR = 0.093
Data-to-parameter ratio = 12.6
Details
Open access

Silver diaquacobalt(II) catena-borodiphosphate(V) hydrate, (Ag0.79Co0.11)Co(H2O)2[BP2O8]·0.67H2O

aCentre National pour la Recherche Scientifique et Technique, Division UATRS, Angle Allal AlFassi et Avenue des FAR, Hay Ryad, BP 8027, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
Correspondence e-mail: b_jaber50@yahoo.com

The structure of the title compound, (Ag0.79Co0.11)Co(H2O)2[BP2O8]·0.67H2O is isotypic to that of its recently published counterparts AgMg(H2O)2[BP2O8]·H2O and (Ag0.57Ni0.22)Ni(H2O)2[BP2O8]·0.67H2O. It consists of infinite borophosphate helical ribbons [BP2O8]3-, built up from alternate BO4 and PO4 tetrahedra arranged around the 65 screw axes. The vertex-sharing BO4 and PO4 tetrahedra form a spiral ribbon of four-membred rings in which BO4 and PO4 groups alternate. The ribbons are connected through slightly distorted CoO4(H2O)2 octahedra whose four O atoms belong to the phosphate groups. The resulting three-dimensional framework is characterized by hexagonal channels running along [001] in which the remaining water molecules are located. The main difference between the Mg-containing and the title structure lies in the filling ratio of Wyckoff positions 6a and 6b in the tunnels. The refinement of the occupancy rate of the site 6a shows that it is occupied by water at 67%, while the refinement of that of the site 6b shows that this site is partially occupied by 78.4% Ag and 10.8% Co, for a total of 82.2%. The structure is stabilized by O-H...O hydrogen bonds between water molecules and O atoms that are part of the helices.

Related literature

For the isotypic Mg and Ni analogues, see: Zouihri et al. (2011a[Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011a). Acta Cryst. E67, i44.],b[Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011b). Acta Cryst. E67, i39.]); Menezes et al. (2008[Menezes, P. W., Hoffmann, S., Prots, Y. & Kniep, R. (2008). Z. Kristallogr. 223, 333-334.]). For other similar borophosphates, see: Kniep et al. (1997[Kniep, R., Will, H. G., Boy, I. & Rohr, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 1013-1014.], 1998[Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930-2934.]); Ewald et al. (2007[Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517-1540.]); Lin et al. (2008[Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39-i40.]). For ionic radii, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

Experimental

Crystal data
  • (Ag0.79Co0.11)Co(H2O)2[BP2O8]·0.67H2O

  • Mr = 398.78

  • Hexagonal, P 65 22

  • a = 9.4321 (11) Å

  • c = 15.750 (4) Å

  • V = 1213.5 (4) Å3

  • Z = 6

  • Mo K[alpha] radiation

  • [mu] = 4.63 mm-1

  • T = 296 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.519, Tmax = 0.630

  • 7995 measured reflections

  • 974 independent reflections

  • 748 reflections with I > 2[sigma](I)

  • Rint = 0.096

Refinement
  • R[F2 > 2[sigma](F2)] = 0.040

  • wR(F2) = 0.093

  • S = 1.07

  • 974 reflections

  • 77 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 0.83 e Å-3

  • [Delta][rho]min = -0.54 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 340 Friedel pairs

  • Flack parameter: -0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O5-H5A...O4i 0.86 1.89 2.748 (6) 178
O5-H5B...O2 0.86 1.90 2.750 (6) 171
O6-H6A...O5ii 0.88 2.44 3.139 (11) 137
Symmetry codes: (i) [-x+y, -x+1, z+{\script{1\over 3}}]; (ii) x-y+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2019 ).


Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517-1540.  [CrossRef] [ChemPort]
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  [CrossRef] [details]
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.  [CrossRef] [ChemPort] [details]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930-2934.  [ISI] [CrossRef] [ChemPort]
Kniep, R., Will, H. G., Boy, I. & Rohr, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 1013-1014.  [CrossRef] [ChemPort] [ISI]
Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39-i40.  [CrossRef] [details]
Menezes, P. W., Hoffmann, S., Prots, Y. & Kniep, R. (2008). Z. Kristallogr. 223, 333-334.  [ChemPort]
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.  [CrossRef] [details]
Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011a). Acta Cryst. E67, i44.  [CrossRef] [details]
Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011b). Acta Cryst. E67, i39.  [CrossRef] [details]


Acta Cryst (2012). E68, i3-i4   [ doi:10.1107/S1600536811052020 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.