supplementary materials


rz2676 scheme

Acta Cryst. (2012). E68, o20    [ doi:10.1107/S1600536811051233 ]

(E)-N'-(4-Hydroxybenzylidene)-3-nitrobenzohydrazide

X.-F. Meng, D.-Y. Wang and J.-J. Ma

Abstract top

The molecule of the title compound, C14H11N3O4, assumes an E conformation about the C=N double bond. The benzene rings form a dihedral angle of 3.9 (2)°. The crystal structure is stabilized by N-H...O, O-H...N, O-H...O and C-H...O hydrogen bonds, forming layers parallel to (101). In addition, intralayer [pi]-[pi] stacking interactions [centroid-centroid distance = 3.635 (2) Å] are observed.

Comment top

Benzohydrazide compounds are well known for their biological activities (El-Sayed et al., 2011; Horiuchi et al., 2009). In addition, benzohydrazide compounds have also been used as versatile ligands in coordination chemistry (El-Dissouky et al., 2010, Zhang et al., 2010). As a contribution to the structural study of hydrazone compounds, we present here the crystal structure of the title compound, which was obtained as the product of the reaction of 4-hydroxybenzaldehyde with 3-nitrobenzohydrazide in methanol.

In the title compound, Fig. 1, the mean planes of the two benzene rings form a dihedral angle of 3.9 (2)°. The bond distances and angles are within normal ranges (Allen et al., 1987), and agree well with the corresponding bond distances and angles reported in closely related compounds (Meng et al., 2011; Liu et al., 2011; Zhou et al., 2011). In the crystal structure, intermolecular N—H···O, O—H···N, C—H···O and O—H···O hydrogen bonds (Table 1; Fig. 2) link molecules into layers parallel to the (101) plane. The layers are further stabilized by ππ stacking interactions with centroid-to-centroid distances of 3.635 (2) Å.

Related literature top

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011); Horiuchi et al. (2009). For coordination compounds of benzohydrazide derivatives, see: El-Dissouky et al. (2010); Zhang et al. (2010). For standard bond lengths, see: Allen et al. (1987). For similar structures, see: Liu et al. (2011); Zhou et al. (2011); Meng et al. (2011).

Experimental top

To a methanol solution (20 ml) of 4-hydroxybenzaldehyde (0.1 mmol, 12.2 mg) and 3-nitrobenzohydrazide (0.1 mmol, 18.1 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The yellow crystalline solid was collected by filtration, washed with cold methanol and dried in air. Single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The imine H atoms was located in a difference Fourier map and refined with the N—H distance restrained to 0.90 (1) Å and with Uiso(H) = 0.08 Å2. The C- and O-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the N—H···O, O—H···N, and O—H···O hydrogen-bonds (dashed lines). H-atoms not involved in the hydrogen bonding have been omitted for clarity.
(E)-N'-(4-Hydroxybenzylidene)-3-nitrobenzohydrazide top
Crystal data top
C14H11N3O4F(000) = 592
Mr = 285.26Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3224 reflections
a = 10.362 (2) Åθ = 2.5–27.2°
b = 12.178 (3) ŵ = 0.11 mm1
c = 10.468 (2) ÅT = 298 K
β = 91.666 (2)°Block, yellow
V = 1320.3 (5) Å30.17 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2884 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scanθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.982, Tmax = 0.984k = 1515
10464 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.233P]
where P = (Fo2 + 2Fc2)/3
2884 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C14H11N3O4V = 1320.3 (5) Å3
Mr = 285.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.362 (2) ŵ = 0.11 mm1
b = 12.178 (3) ÅT = 298 K
c = 10.468 (2) Å0.17 × 0.15 × 0.15 mm
β = 91.666 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2884 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2017 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.034
10464 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129Δρmax = 0.20 e Å3
S = 1.03Δρmin = 0.23 e Å3
2884 reflectionsAbsolute structure: ?
194 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05181 (12)0.48482 (12)0.34202 (13)0.0426 (4)
N20.14827 (13)0.55140 (12)0.39294 (14)0.0432 (4)
N30.56139 (14)0.71802 (15)0.60566 (14)0.0521 (4)
O10.27851 (12)0.07966 (10)0.13367 (13)0.0548 (4)
H10.35100.10640.12730.082*
O20.01462 (11)0.69680 (10)0.38555 (12)0.0525 (4)
O30.57302 (14)0.61913 (14)0.62040 (16)0.0768 (5)
O40.64912 (12)0.78320 (13)0.62796 (14)0.0682 (4)
C10.01449 (16)0.19488 (15)0.27428 (16)0.0451 (4)
H1A0.09460.17030.30470.054*
C20.07416 (16)0.12048 (15)0.22597 (17)0.0481 (4)
H20.05390.04610.22400.058*
C30.19415 (15)0.15658 (14)0.18014 (15)0.0403 (4)
C40.22330 (16)0.26705 (14)0.18248 (16)0.0418 (4)
H40.30300.29160.15100.050*
C50.13454 (15)0.34089 (14)0.23140 (15)0.0414 (4)
H50.15520.41520.23330.050*
C60.01402 (15)0.30600 (14)0.27822 (14)0.0383 (4)
C70.07926 (15)0.38382 (14)0.33207 (15)0.0416 (4)
H70.16030.35900.35960.050*
C80.12135 (15)0.65778 (14)0.41169 (14)0.0387 (4)
C90.22883 (15)0.72875 (14)0.46301 (14)0.0387 (4)
C100.34487 (15)0.68786 (14)0.51232 (14)0.0403 (4)
H100.36010.61260.51550.048*
C110.43746 (15)0.76159 (15)0.55668 (15)0.0425 (4)
C120.41881 (18)0.87291 (16)0.55569 (17)0.0524 (5)
H120.48240.92020.58750.063*
C130.30287 (19)0.91322 (16)0.5062 (2)0.0599 (5)
H130.28800.98850.50380.072*
C140.20934 (17)0.84119 (15)0.46041 (17)0.0499 (4)
H140.13170.86890.42720.060*
H2A0.2202 (14)0.5183 (17)0.4207 (19)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0309 (7)0.0467 (9)0.0495 (8)0.0055 (6)0.0112 (6)0.0001 (6)
N20.0285 (7)0.0449 (8)0.0553 (8)0.0034 (6)0.0141 (6)0.0009 (6)
N30.0346 (8)0.0727 (12)0.0487 (8)0.0096 (8)0.0060 (6)0.0011 (8)
O10.0401 (7)0.0508 (8)0.0729 (8)0.0085 (6)0.0092 (6)0.0107 (6)
O20.0333 (7)0.0542 (8)0.0691 (8)0.0028 (5)0.0139 (6)0.0007 (6)
O30.0500 (9)0.0740 (11)0.1050 (12)0.0048 (8)0.0232 (8)0.0193 (9)
O40.0378 (7)0.0908 (11)0.0752 (9)0.0179 (7)0.0097 (6)0.0121 (8)
C10.0300 (8)0.0517 (10)0.0530 (10)0.0035 (7)0.0052 (7)0.0029 (8)
C20.0411 (10)0.0420 (10)0.0612 (11)0.0019 (8)0.0009 (8)0.0050 (8)
C30.0320 (8)0.0477 (10)0.0411 (8)0.0081 (7)0.0005 (6)0.0053 (7)
C40.0308 (8)0.0495 (10)0.0448 (9)0.0003 (7)0.0068 (7)0.0010 (7)
C50.0351 (9)0.0411 (9)0.0475 (9)0.0014 (7)0.0055 (7)0.0011 (7)
C60.0304 (8)0.0469 (10)0.0373 (8)0.0033 (7)0.0009 (6)0.0028 (7)
C70.0279 (8)0.0506 (11)0.0460 (9)0.0017 (7)0.0060 (7)0.0011 (7)
C80.0307 (8)0.0483 (10)0.0368 (8)0.0015 (7)0.0055 (6)0.0035 (7)
C90.0322 (8)0.0474 (10)0.0364 (8)0.0046 (7)0.0009 (6)0.0006 (7)
C100.0325 (9)0.0468 (10)0.0415 (8)0.0050 (7)0.0038 (7)0.0014 (7)
C110.0313 (9)0.0594 (11)0.0366 (8)0.0079 (8)0.0011 (6)0.0007 (7)
C120.0457 (10)0.0558 (12)0.0554 (11)0.0154 (9)0.0028 (8)0.0068 (9)
C130.0567 (12)0.0468 (11)0.0757 (13)0.0052 (9)0.0052 (10)0.0059 (9)
C140.0432 (10)0.0497 (11)0.0563 (10)0.0030 (8)0.0057 (8)0.0015 (8)
Geometric parameters (Å, °) top
N1—C71.267 (2)C4—H40.9300
N1—N21.3819 (18)C5—C61.394 (2)
N2—C81.341 (2)C5—H50.9300
N2—H2A0.888 (9)C6—C71.456 (2)
N3—O31.220 (2)C7—H70.9300
N3—O41.224 (2)C8—C91.497 (2)
N3—C111.468 (2)C9—C141.384 (2)
O1—C31.3614 (19)C9—C101.387 (2)
O1—H10.8200C10—C111.384 (2)
O2—C81.2272 (18)C10—H100.9300
C1—C21.376 (2)C11—C121.369 (3)
C1—C61.386 (2)C12—C131.384 (3)
C1—H1A0.9300C12—H120.9300
C2—C31.391 (2)C13—C141.383 (2)
C2—H20.9300C13—H130.9300
C3—C41.379 (2)C14—H140.9300
C4—C51.375 (2)
C7—N1—N2116.07 (13)C5—C6—C7121.03 (15)
C8—N2—N1118.17 (13)N1—C7—C6121.04 (15)
C8—N2—H2A124.5 (15)N1—C7—H7119.5
N1—N2—H2A116.8 (15)C6—C7—H7119.5
O3—N3—O4123.09 (17)O2—C8—N2122.10 (15)
O3—N3—C11118.90 (15)O2—C8—C9120.85 (16)
O4—N3—C11118.00 (17)N2—C8—C9117.03 (14)
C3—O1—H1109.5C14—C9—C10119.13 (15)
C2—C1—C6120.87 (15)C14—C9—C8117.22 (15)
C2—C1—H1A119.6C10—C9—C8123.65 (15)
C6—C1—H1A119.6C11—C10—C9118.48 (16)
C1—C2—C3119.95 (16)C11—C10—H10120.8
C1—C2—H2120.0C9—C10—H10120.8
C3—C2—H2120.0C12—C11—C10122.91 (16)
O1—C3—C4122.60 (15)C12—C11—N3118.83 (15)
O1—C3—C2117.65 (16)C10—C11—N3118.26 (16)
C4—C3—C2119.75 (15)C11—C12—C13118.34 (16)
C5—C4—C3120.01 (15)C11—C12—H12120.8
C5—C4—H4120.0C13—C12—H12120.8
C3—C4—H4120.0C14—C13—C12119.78 (18)
C4—C5—C6120.95 (16)C14—C13—H13120.1
C4—C5—H5119.5C12—C13—H13120.1
C6—C5—H5119.5C13—C14—C9121.35 (17)
C1—C6—C5118.46 (14)C13—C14—H14119.3
C1—C6—C7120.50 (14)C9—C14—H14119.3
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.022.8341 (18)170.
O1—H1···N1i0.822.583.0757 (19)120.
N2—H2A···O1ii0.89 (1)2.53 (2)3.0597 (19)119.(2)
C5—H5···O1iii0.932.543.367 (2)147
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x−1/2, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.022.8341 (18)170.
O1—H1···N1i0.822.583.0757 (19)120.
N2—H2A···O1ii0.89 (1)2.53 (2)3.0597 (19)119.(2)
C5—H5···O1iii0.932.543.367 (2)147
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x−1/2, y+1/2, −z+1/2.
Acknowledgements top

This project was sponsored by the Natural Development Foundation of Hebei Province (B2011204051), the Development Foundation of the Department of Education of Hebei Province (2010137) and the Research Development Foundation of the Agricultural University of Hebei.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

El-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330–345.

El-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416–3424.

Horiuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.

Liu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.

Meng, X.-F., Wang, D.-Y. & Ma, J.-J. (2011). Acta Cryst. E67, o3109.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.

Zhou, X., Gao, S.-T. & Ma, J.-J. (2011). Acta Cryst. E67, o2275.