supplementary materials


rz2680 scheme

Acta Cryst. (2012). E68, o151    [ doi:10.1107/S1600536811053347 ]

(E)-3,3'-(Diazene-1,2-diyl)bis(1-methyl-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazol-5-ium) dinitrate dihydrate

J.-M. Chen and H. Zhao

Abstract top

The title compound, C12H18N82+·2NO3-·2H2O, was synthesized unexpectedly from 3-amino-1-methyl-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazol-5-ium chloride and cerium(IV) ammonium nitrate. The cation has a crystallographically imposed centre of symmetry. In the crystal, the ions and water molecules are linked via O-H...N, N-H...O and O-H...O hydrogen bonds into a three-dimensional network.

Comment top

Tetrahydropyrrolo[3,4-c]pyrazol derivatives are used as anticancer kinase inhibitors (Xia et al., 2011; Fancelli et al., 2005; Gadekar et al., 1968). The title compound was synthesized unexpectedly from 3-amino-1-methyl-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazol-5-ium chloride and cerium(IV) ammonium nitrate, and its crystal structure is presented herein.

The molecular structure of the title compound is shown in Fig. 1. The cation lies on a crystallographic inversion centre located at the centre of the diazene fragment. The dihedral angle between the fused pyrrole and pyrazole rings is 4.46 (12)°. In the crystal structure, the ions and water molecules are linked via O—H···N, N—H···O and O—H···O hydrogen bonds into a three-dimensional network. (Table 1; Fig. 2).

Related literature top

For background to potential anticancer kinase inhibitors, see: Fancelli et al. (2005); Gadekar et al. (1968). For a related structure, see: Xia et al. (2011).

Experimental top

3-Amino-1-methyl-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazol-5-ium chloride (0.35 g, 2 mmol) and cerium(IV) ammonium nitrate (0.28 g, 0.5 mmol) were dissolved in 95% ethanol (25 ml). The solution was filtered and left at room temperature for 10 days. Yellow prism crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent.

Refinement top

The water H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions and refined using a riding model approximation, with C—H=0.96–0.92 Å,N—H=0.97 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level. Atoms with suffix A are generated by the symmetry operation (1-x, 1-y, 1-z).
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the a axis. Dashed lines indicate hydrogen bonds.
(E)-3,3'-(Diazene-1,2-diyl)bis(1-methyl-1,4,5,6- tetrahydropyrrolo[3,4-c]pyrazol-5-ium) dinitrate dihydrate top
Crystal data top
C12H18N82+·2NO3·2H2OZ = 1
Mr = 434.40F(000) = 228
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2344 (12) ÅCell parameters from 4309 reflections
b = 7.7725 (16) Åθ = 3.1–27.2°
c = 9.7071 (19) ŵ = 0.13 mm1
α = 99.56 (3)°T = 295 K
β = 92.49 (3)°Prism, yellow
γ = 92.84 (3)°0.22 × 0.16 × 0.12 mm
V = 462.64 (16) Å3
Data collection top
Rigaku SCXmini
diffractometer
1479 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
graphiteθmax = 26.0°, θmin = 3.1°
Detector resolution: 13.6612 pixels mm-1h = 77
CCD_Profile_fitting scansk = 99
4322 measured reflectionsl = 1111
1811 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.060P)2 + 0.1401P]
where P = (Fo2 + 2Fc2)/3
1811 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H18N82+·2NO3·2H2Oγ = 92.84 (3)°
Mr = 434.40V = 462.64 (16) Å3
Triclinic, P1Z = 1
a = 6.2344 (12) ÅMo Kα radiation
b = 7.7725 (16) ŵ = 0.13 mm1
c = 9.7071 (19) ÅT = 295 K
α = 99.56 (3)°0.22 × 0.16 × 0.12 mm
β = 92.49 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1479 reflections with I > 2σ(I)
4322 measured reflectionsRint = 0.034
1811 independent reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131Δρmax = 0.28 e Å3
S = 1.08Δρmin = 0.21 e Å3
1811 reflectionsAbsolute structure: ?
145 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7436 (3)0.6228 (2)0.52005 (18)0.0324 (4)
C20.8295 (3)0.6536 (2)0.65780 (17)0.0301 (4)
C31.0187 (3)0.7441 (2)0.65097 (18)0.0308 (4)
C40.7930 (3)0.6264 (3)0.80235 (18)0.0370 (5)
H4A0.75920.50430.80650.044*
H4B0.67900.69590.84260.044*
C51.1457 (3)0.7872 (3)0.78510 (19)0.0388 (5)
H5A1.15560.91190.81990.047*
H5B1.28910.74460.77790.047*
C71.2218 (3)0.8565 (3)0.4629 (2)0.0467 (5)
H7A1.31420.91900.53830.070*
H7B1.16740.93710.40680.070*
H7C1.30160.77170.40620.070*
N10.5569 (2)0.5305 (2)0.45680 (15)0.0353 (4)
N21.0105 (3)0.6894 (2)0.87401 (16)0.0404 (4)
H2A0.99120.75950.95560.049*
H2B1.08030.59680.89320.049*
N30.6426 (3)0.1158 (3)0.86872 (18)0.0456 (5)
N40.8749 (3)0.6936 (2)0.43628 (16)0.0363 (4)
N51.0436 (2)0.7685 (2)0.51941 (15)0.0340 (4)
O10.1944 (3)0.3662 (2)0.86511 (17)0.0527 (4)
O20.6074 (3)0.2635 (2)0.93400 (19)0.0651 (5)
O30.8117 (3)0.0492 (3)0.89667 (19)0.0733 (6)
O50.5152 (3)0.0407 (3)0.77657 (19)0.0761 (6)
H1E0.167 (4)0.323 (3)0.769 (3)0.068 (8)*
H1F0.323 (6)0.344 (4)0.886 (3)0.084 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0333 (9)0.0308 (9)0.0313 (9)0.0052 (8)0.0060 (7)0.0007 (7)
C20.0293 (9)0.0284 (9)0.0310 (9)0.0027 (7)0.0034 (7)0.0012 (7)
C30.0301 (9)0.0286 (9)0.0325 (9)0.0031 (7)0.0016 (7)0.0024 (7)
C40.0318 (9)0.0437 (11)0.0341 (10)0.0039 (8)0.0051 (8)0.0065 (8)
C50.0311 (9)0.0456 (11)0.0379 (10)0.0057 (8)0.0047 (8)0.0061 (8)
C70.0461 (12)0.0463 (12)0.0498 (12)0.0040 (10)0.0094 (10)0.0122 (9)
N10.0359 (9)0.0330 (8)0.0347 (8)0.0038 (7)0.0089 (6)0.0009 (6)
N20.0365 (9)0.0528 (10)0.0302 (8)0.0027 (8)0.0063 (7)0.0052 (7)
N30.0430 (10)0.0540 (11)0.0378 (9)0.0108 (9)0.0043 (8)0.0078 (8)
N40.0403 (9)0.0373 (9)0.0301 (8)0.0048 (7)0.0042 (7)0.0034 (6)
N50.0353 (8)0.0332 (8)0.0336 (8)0.0042 (7)0.0007 (6)0.0051 (6)
O10.0513 (10)0.0694 (11)0.0375 (8)0.0156 (8)0.0006 (7)0.0056 (7)
O20.0619 (11)0.0573 (11)0.0706 (11)0.0123 (9)0.0215 (8)0.0018 (9)
O30.0658 (11)0.0726 (12)0.0727 (12)0.0239 (10)0.0173 (9)0.0139 (9)
O50.0587 (11)0.0946 (14)0.0639 (11)0.0315 (10)0.0129 (9)0.0043 (10)
Geometric parameters (Å, °) top
C1—N41.340 (3)C7—N51.451 (3)
C1—C21.397 (2)C7—H7A0.9600
C1—N11.398 (2)C7—H7B0.9600
C2—C31.353 (3)C7—H7C0.9600
C2—C41.479 (2)N1—N1i1.258 (3)
C3—N51.336 (2)N2—H2A0.9000
C3—C51.474 (2)N2—H2B0.9000
C4—N21.517 (2)N3—O51.221 (2)
C4—H4A0.9700N3—O31.237 (2)
C4—H4B0.9700N3—O21.250 (2)
C5—N21.500 (3)N4—N51.344 (2)
C5—H5A0.9700O1—H1E0.95 (3)
C5—H5B0.9700O1—H1F0.85 (4)
N4—C1—C2110.64 (16)N5—C7—H7A109.5
N4—C1—N1116.89 (16)N5—C7—H7B109.5
C2—C1—N1132.44 (17)H7A—C7—H7B109.5
C3—C2—C1104.04 (16)N5—C7—H7C109.5
C3—C2—C4111.36 (15)H7A—C7—H7C109.5
C1—C2—C4144.60 (17)H7B—C7—H7C109.5
N5—C3—C2109.44 (16)N1i—N1—C1112.49 (18)
N5—C3—C5136.16 (17)C5—N2—C4111.95 (14)
C2—C3—C5114.38 (16)C5—N2—H2A109.2
C2—C4—N2100.74 (14)C4—N2—H2A109.2
C2—C4—H4A111.6C5—N2—H2B109.2
N2—C4—H4A111.6C4—N2—H2B109.2
C2—C4—H4B111.6H2A—N2—H2B107.9
N2—C4—H4B111.6O5—N3—O3120.6 (2)
H4A—C4—H4B109.4O5—N3—O2120.7 (2)
C3—C5—N299.89 (14)O3—N3—O2118.73 (18)
C3—C5—H5A111.8C1—N4—N5105.67 (14)
N2—C5—H5A111.8C3—N5—N4110.19 (15)
C3—C5—H5B111.8C3—N5—C7128.79 (17)
N2—C5—H5B111.8N4—N5—C7120.99 (16)
H5A—C5—H5B109.5H1E—O1—H1F107 (3)
N4—C1—C2—C30.7 (2)N4—C1—N1—N1i179.69 (18)
N1—C1—C2—C3176.94 (18)C2—C1—N1—N1i2.8 (3)
N4—C1—C2—C4179.0 (2)C3—C5—N2—C411.9 (2)
N1—C1—C2—C43.4 (4)C2—C4—N2—C513.2 (2)
C1—C2—C3—N50.9 (2)C2—C1—N4—N50.20 (19)
C4—C2—C3—N5178.88 (15)N1—C1—N4—N5177.85 (14)
C1—C2—C3—C5177.86 (15)C2—C3—N5—N40.9 (2)
C4—C2—C3—C52.3 (2)C5—C3—N5—N4177.5 (2)
C3—C2—C4—N29.2 (2)C2—C3—N5—C7179.34 (17)
C1—C2—C4—N2171.1 (2)C5—C3—N5—C70.9 (3)
N5—C3—C5—N2172.5 (2)C1—N4—N5—C30.39 (19)
C2—C3—C5—N25.9 (2)C1—N4—N5—C7179.01 (16)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1E···N4i0.95 (3)1.98 (3)2.895 (2)163 (2)
N2—H2B···O1ii0.901.942.802 (3)159.
N2—H2A···O1iii0.902.442.970 (2)118.
N2—H2A···O3iv0.902.182.894 (3)136.
O1—H1F···O20.85 (4)1.97 (4)2.819 (2)173 (3)
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) −x+2, −y+1, −z+2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1E···N4i0.95 (3)1.98 (3)2.895 (2)163 (2)
N2—H2B···O1ii0.901.942.802 (3)159.
N2—H2A···O1iii0.902.442.970 (2)118.
N2—H2A···O3iv0.902.182.894 (3)136.
O1—H1F···O20.85 (4)1.97 (4)2.819 (2)173 (3)
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) −x+2, −y+1, −z+2.
Acknowledgements top

This work was supported financially by Southeast University Fund for Young Researchers (4007041027).

references
References top

Fancelli, D., Berta, D., Bindi, S., Cameron, A., Cappella, P., Carpinelli, P., et al. (2005). J. Med. Chem. 48, 3080–3084.

Gadekar, S. M., Johnson, B. D. & Cohen, E. (1968). J. Med. Chem. 11, 616–618.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xia, W.-B., Bai, X.-G., Liu, H.-T. & Wang, J.-X. (2011). Acta Cryst. E67, o1150.