organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′,5,5′-Tetra­chloro-N,N′-di­ethyl-N,N′-[benzene-1,3-diylbis(methyl­ene)]di­benzene­sulfonamide

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 25 October 2011; accepted 28 October 2011; online 3 December 2011)

In the title compound, C24H24Cl4N2O4S2, the dihedral angles between the central benzene ring and the pendant rings are 58.09 (10) and 62.59 (10)°. The dihedral angle between the pendant rings is 81.64 (9)°. Both sulfonamide groups lie to the same side of the central ring but the C—S—N—C torsion angles [73.09 (16) and −117.35 (14)] and S—N—C—C torsion angles [−143.80 (14) and −111.45 (16)°] differ significantly for the two pendant chains. The N atoms are close to planar (bond angle sums = 356.4 and 359.5°). In the crystal, weak C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules.

Related literature

For related structures, see: Ejaz et al. (2011a[Ejaz, Khan, I. U., Ahmad, H. & Harrison, W. T. A. (2011a). Acta Cryst. E67, o3037.],b[Ejaz, Khan, I. U., Ahmad, H., Harrison, W. T. A. & Sheikh, T. A. (2011b). Acta Cryst. E67, o3038.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24Cl4N2O4S2

  • Mr = 610.37

  • Triclinic, [P \overline 1]

  • a = 8.0396 (2) Å

  • b = 11.1512 (3) Å

  • c = 15.5723 (3) Å

  • α = 87.454 (1)°

  • β = 83.378 (1)°

  • γ = 87.995 (1)°

  • V = 1384.77 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 296 K

  • 0.50 × 0.35 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 25271 measured reflections

  • 6905 independent reflections

  • 5380 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.04

  • 6905 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O3i 0.97 2.59 3.511 (2) 158
C17—H17B⋯O1ii 0.97 2.58 3.516 (3) 164
C24—H24⋯Cl1ii 0.93 2.83 3.738 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of symmetrical aryl sulfonamides (Ejaz et al., 2011a,b), the synthesis and structure of the title compound are described herein.

In the title compound (Fig. 1), the dihedral angles between the central (C1-C6) benzene ring and the pendant (C10-C15) and (C19-C24) rings are 58.09 (1) and 62.59 (10)°, respectively. The equivalent angle between the pendant rings is 81.64 (9)°. Both sulfonamide groups lie to the same side of the central ring, but the C10—S1—N1—C7 and C19—S2—N2—C16 torsion angles [73.09 (16) and -117.35 (14)°, respectively] and the S1—N1—C7—C2 and S2—N2—C16—C6 torsion angles [-143.80 (14) and -111.45 (16)°, respectively] differ significantly for the two pendant chains. The conformations of the ethyl side chains are also different: the S1—N1—C8—C9 and S2—N2—C17—C18 torsion angles are -89.6 (2) and -126.57 (19)°, respectively. The nitrogen atoms are close to planar (bond angle sums = 356.4 and 359.5° for N1 and N2, respectively), which seems to indicate a valence state close to sp2 hybridization, as also seen in a related structure (Ejaz et al., 2011a).

In the crystal, weak C—H···O and C—H···Cl interactions link the molecules (Table 1).

Related literature top

For related structures, see: Ejaz et al. (2011a,b).

Experimental top

A mixture of N,N'-(benzene-1,3-diyldimethanediyl)bis(2,5-dichlorobenzenesulfonamide) (0.3 g; 0.5 mmol), sodium hydride (0.25 g; 0.9 mmol) and N,N-dimethylformamide (10.0 ml) was stirred in a 100-ml round bottom flask at room temperature for half an hour followed by the addition of ethyl iodide (0.15 g; 0.9 mmol). The reaction mixture was further stirred for five hours, and its completion was monitored by TLC. After completion, the contents were poured over crushed ice. The precipitated product was isolated, washed and crystallized from methanol to yield colourless block-like crystals of the title compound.

Refinement top

The hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 50% displacement ellipsoids and the numbering scheme.
2,2',5,5'-Tetrachloro-N,N'-diethyl-N,N'- [benzene-1,3-diylbis(methylene)]dibenzenesulfonamide top
Crystal data top
C24H24Cl4N2O4S2Z = 2
Mr = 610.37F(000) = 628
Triclinic, P1Dx = 1.464 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0396 (2) ÅCell parameters from 6905 reflections
b = 11.1512 (3) Åθ = 2.2–28.1°
c = 15.5723 (3) ŵ = 0.61 mm1
α = 87.454 (1)°T = 296 K
β = 83.378 (1)°Chnnk, colourless
γ = 87.995 (1)°0.50 × 0.35 × 0.30 mm
V = 1384.77 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5380 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.4°, θmin = 3.0°
ω scansh = 810
25271 measured reflectionsk = 1414
6905 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4193P]
where P = (Fo2 + 2Fc2)/3
6905 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C24H24Cl4N2O4S2γ = 87.995 (1)°
Mr = 610.37V = 1384.77 (6) Å3
Triclinic, P1Z = 2
a = 8.0396 (2) ÅMo Kα radiation
b = 11.1512 (3) ŵ = 0.61 mm1
c = 15.5723 (3) ÅT = 296 K
α = 87.454 (1)°0.50 × 0.35 × 0.30 mm
β = 83.378 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5380 reflections with I > 2σ(I)
25271 measured reflectionsRint = 0.020
6905 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
6905 reflectionsΔρmin = 0.38 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6756 (2)0.63163 (16)0.43821 (11)0.0454 (4)
H10.56230.62420.43330.055*
C20.7280 (3)0.63672 (17)0.51940 (12)0.0502 (4)
C30.8970 (3)0.6480 (2)0.52549 (15)0.0695 (6)
H30.93400.65250.57970.083*
C41.0103 (3)0.6527 (3)0.45304 (17)0.0776 (7)
H41.12360.65940.45830.093*
C50.9572 (3)0.6475 (2)0.37192 (14)0.0622 (5)
H51.03470.65090.32280.075*
C60.7890 (2)0.63737 (16)0.36384 (11)0.0452 (4)
C70.6016 (3)0.63174 (18)0.59876 (12)0.0579 (5)
H7A0.49350.61130.58250.069*
H7B0.63590.56960.63920.069*
C80.5407 (3)0.85534 (19)0.58997 (13)0.0571 (5)
H8A0.61710.86070.53710.069*
H8B0.55530.92560.62250.069*
C90.3646 (4)0.8577 (3)0.5668 (2)0.0967 (9)
H9A0.34630.92740.53040.145*
H9B0.28750.86030.61870.145*
H9C0.34730.78670.53670.145*
C100.75316 (19)0.69614 (16)0.77750 (10)0.0395 (3)
C110.8994 (2)0.75963 (17)0.75576 (12)0.0462 (4)
C121.0466 (2)0.71855 (19)0.78590 (14)0.0567 (5)
H121.14380.76140.77170.068*
C131.0506 (2)0.6145 (2)0.83684 (14)0.0578 (5)
H131.14990.58730.85740.069*
C140.9069 (2)0.55140 (17)0.85701 (12)0.0476 (4)
C150.7572 (2)0.59124 (16)0.82812 (11)0.0417 (4)
H150.66050.54790.84260.050*
C160.7269 (2)0.63890 (16)0.27608 (11)0.0462 (4)
H16A0.82160.63380.23170.055*
H16B0.65860.56970.27240.055*
C170.7074 (3)0.86554 (18)0.26202 (15)0.0604 (5)
H17A0.74580.87390.31820.073*
H17B0.62510.92950.25380.073*
C180.8521 (4)0.8787 (3)0.1935 (2)0.0934 (9)
H18A0.88940.95980.19100.140*
H18B0.81810.86020.13860.140*
H18C0.94190.82460.20690.140*
C190.4012 (2)0.80340 (16)0.14908 (10)0.0414 (4)
C200.4657 (2)0.74445 (17)0.07480 (11)0.0470 (4)
C210.4306 (3)0.7893 (2)0.00540 (12)0.0597 (5)
H210.47220.74890.05470.072*
C220.3354 (3)0.8928 (2)0.01335 (13)0.0620 (5)
H220.31190.92230.06760.074*
C230.2751 (2)0.95234 (18)0.05987 (12)0.0514 (4)
C240.3068 (2)0.90861 (17)0.14088 (11)0.0458 (4)
H240.26490.94970.18980.055*
S10.55636 (5)0.74464 (4)0.74476 (3)0.04106 (11)
S20.42957 (6)0.74915 (4)0.25594 (3)0.04402 (11)
N10.5864 (2)0.74805 (14)0.64078 (9)0.0489 (4)
N20.62753 (19)0.74925 (13)0.26098 (10)0.0475 (3)
O10.51855 (17)0.86403 (12)0.77167 (9)0.0560 (3)
O20.44311 (14)0.65269 (12)0.77704 (8)0.0515 (3)
O30.37690 (17)0.62781 (12)0.26631 (9)0.0563 (3)
O40.34712 (19)0.83655 (14)0.31150 (8)0.0622 (4)
Cl10.90284 (7)0.88984 (5)0.69119 (4)0.06287 (14)
Cl20.91046 (7)0.41825 (5)0.91822 (4)0.06768 (16)
Cl30.59191 (7)0.61629 (5)0.07875 (3)0.06285 (15)
Cl40.15880 (8)1.08554 (5)0.05174 (4)0.07195 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0522 (10)0.0428 (10)0.0418 (9)0.0030 (7)0.0065 (7)0.0035 (7)
C20.0699 (12)0.0418 (10)0.0399 (9)0.0025 (8)0.0106 (8)0.0043 (7)
C30.0735 (14)0.0824 (16)0.0571 (13)0.0149 (12)0.0270 (11)0.0146 (11)
C40.0519 (12)0.107 (2)0.0773 (16)0.0142 (12)0.0204 (11)0.0194 (14)
C50.0492 (11)0.0776 (15)0.0591 (12)0.0081 (10)0.0047 (9)0.0072 (11)
C60.0494 (9)0.0430 (10)0.0429 (9)0.0052 (7)0.0054 (7)0.0032 (7)
C70.0879 (15)0.0477 (11)0.0384 (9)0.0080 (10)0.0066 (9)0.0019 (8)
C80.0692 (13)0.0528 (11)0.0463 (10)0.0054 (9)0.0006 (9)0.0103 (9)
C90.0856 (19)0.106 (2)0.099 (2)0.0127 (16)0.0304 (16)0.0276 (18)
C100.0340 (7)0.0486 (10)0.0360 (8)0.0002 (7)0.0017 (6)0.0088 (7)
C110.0416 (9)0.0473 (10)0.0486 (10)0.0037 (7)0.0021 (7)0.0083 (8)
C120.0345 (8)0.0634 (13)0.0716 (13)0.0056 (8)0.0007 (8)0.0081 (10)
C130.0368 (9)0.0688 (13)0.0688 (13)0.0047 (8)0.0101 (8)0.0098 (10)
C140.0446 (9)0.0508 (11)0.0478 (10)0.0054 (8)0.0077 (7)0.0067 (8)
C150.0363 (8)0.0506 (10)0.0383 (8)0.0013 (7)0.0034 (6)0.0068 (7)
C160.0526 (10)0.0469 (10)0.0382 (9)0.0034 (8)0.0012 (7)0.0060 (7)
C170.0711 (13)0.0451 (11)0.0688 (13)0.0084 (9)0.0234 (11)0.0018 (9)
C180.098 (2)0.0845 (19)0.097 (2)0.0371 (16)0.0047 (16)0.0179 (16)
C190.0412 (8)0.0490 (10)0.0340 (8)0.0053 (7)0.0023 (6)0.0035 (7)
C200.0479 (9)0.0528 (11)0.0394 (9)0.0017 (8)0.0001 (7)0.0069 (8)
C210.0703 (13)0.0731 (14)0.0347 (9)0.0004 (11)0.0004 (8)0.0085 (9)
C220.0715 (13)0.0772 (15)0.0375 (10)0.0008 (11)0.0103 (9)0.0033 (9)
C230.0531 (10)0.0530 (11)0.0486 (10)0.0030 (8)0.0100 (8)0.0023 (8)
C240.0452 (9)0.0519 (11)0.0406 (9)0.0028 (8)0.0044 (7)0.0054 (8)
S10.0364 (2)0.0499 (3)0.0361 (2)0.00241 (17)0.00185 (15)0.00196 (17)
S20.0484 (2)0.0491 (3)0.0329 (2)0.00132 (18)0.00197 (16)0.00125 (17)
N10.0683 (10)0.0431 (8)0.0353 (7)0.0015 (7)0.0079 (7)0.0006 (6)
N20.0529 (8)0.0411 (8)0.0501 (8)0.0039 (6)0.0123 (7)0.0002 (6)
O10.0568 (8)0.0580 (8)0.0521 (8)0.0143 (6)0.0022 (6)0.0118 (6)
O20.0339 (6)0.0686 (9)0.0508 (7)0.0053 (6)0.0034 (5)0.0098 (6)
O30.0571 (8)0.0549 (8)0.0549 (8)0.0138 (6)0.0022 (6)0.0074 (6)
O40.0727 (9)0.0730 (10)0.0378 (7)0.0149 (7)0.0046 (6)0.0090 (6)
Cl10.0584 (3)0.0556 (3)0.0720 (3)0.0115 (2)0.0042 (2)0.0037 (2)
Cl20.0640 (3)0.0647 (3)0.0758 (4)0.0053 (2)0.0212 (3)0.0105 (3)
Cl30.0713 (3)0.0645 (3)0.0507 (3)0.0141 (3)0.0007 (2)0.0128 (2)
Cl40.0829 (4)0.0666 (4)0.0675 (3)0.0136 (3)0.0205 (3)0.0039 (3)
Geometric parameters (Å, º) top
C1—C21.382 (2)C14—C151.385 (2)
C1—C61.389 (3)C14—Cl21.730 (2)
C1—H10.9300C15—H150.9300
C2—C31.383 (3)C16—N21.468 (2)
C2—C71.507 (3)C16—H16A0.9700
C3—C41.366 (3)C16—H16B0.9700
C3—H30.9300C17—N21.469 (2)
C4—C51.383 (3)C17—C181.491 (4)
C4—H40.9300C17—H17A0.9700
C5—C61.381 (3)C17—H17B0.9700
C5—H50.9300C18—H18A0.9600
C6—C161.507 (2)C18—H18B0.9600
C7—N11.474 (2)C18—H18C0.9600
C7—H7A0.9700C19—C241.384 (2)
C7—H7B0.9700C19—C201.394 (2)
C8—N11.465 (2)C19—S21.7820 (17)
C8—C91.499 (3)C20—C211.380 (3)
C8—H8A0.9700C20—Cl31.726 (2)
C8—H8B0.9700C21—C221.371 (3)
C9—H9A0.9600C21—H210.9300
C9—H9B0.9600C22—C231.376 (3)
C9—H9C0.9600C22—H220.9300
C10—C151.383 (2)C23—C241.380 (3)
C10—C111.394 (2)C23—Cl41.735 (2)
C10—S11.7769 (16)C24—H240.9300
C11—C121.379 (3)S1—O11.4256 (14)
C11—Cl11.7282 (19)S1—O21.4307 (13)
C12—C131.378 (3)S1—N11.6082 (15)
C12—H120.9300S2—O41.4267 (14)
C13—C141.372 (3)S2—O31.4286 (14)
C13—H130.9300S2—N21.6025 (16)
C2—C1—C6121.26 (18)N2—C16—C6110.74 (14)
C2—C1—H1119.4N2—C16—H16A109.5
C6—C1—H1119.4C6—C16—H16A109.5
C1—C2—C3118.56 (19)N2—C16—H16B109.5
C1—C2—C7119.97 (19)C6—C16—H16B109.5
C3—C2—C7121.47 (18)H16A—C16—H16B108.1
C4—C3—C2120.9 (2)N2—C17—C18112.5 (2)
C4—C3—H3119.6N2—C17—H17A109.1
C2—C3—H3119.6C18—C17—H17A109.1
C3—C4—C5120.3 (2)N2—C17—H17B109.1
C3—C4—H4119.8C18—C17—H17B109.1
C5—C4—H4119.8H17A—C17—H17B107.8
C6—C5—C4120.1 (2)C17—C18—H18A109.5
C6—C5—H5120.0C17—C18—H18B109.5
C4—C5—H5120.0H18A—C18—H18B109.5
C5—C6—C1118.91 (17)C17—C18—H18C109.5
C5—C6—C16121.04 (17)H18A—C18—H18C109.5
C1—C6—C16119.97 (16)H18B—C18—H18C109.5
N1—C7—C2110.85 (16)C24—C19—C20119.20 (16)
N1—C7—H7A109.5C24—C19—S2117.24 (13)
C2—C7—H7A109.5C20—C19—S2123.55 (14)
N1—C7—H7B109.5C21—C20—C19119.87 (18)
C2—C7—H7B109.5C21—C20—Cl3117.85 (15)
H7A—C7—H7B108.1C19—C20—Cl3122.28 (14)
N1—C8—C9114.22 (19)C22—C21—C20120.85 (19)
N1—C8—H8A108.7C22—C21—H21119.6
C9—C8—H8A108.7C20—C21—H21119.6
N1—C8—H8B108.7C21—C22—C23119.20 (18)
C9—C8—H8B108.7C21—C22—H22120.4
H8A—C8—H8B107.6C23—C22—H22120.4
C8—C9—H9A109.5C22—C23—C24121.06 (19)
C8—C9—H9B109.5C22—C23—Cl4120.31 (15)
H9A—C9—H9B109.5C24—C23—Cl4118.63 (16)
C8—C9—H9C109.5C23—C24—C19119.79 (17)
H9A—C9—H9C109.5C23—C24—H24120.1
H9B—C9—H9C109.5C19—C24—H24120.1
C15—C10—C11119.74 (15)O1—S1—O2118.08 (8)
C15—C10—S1117.14 (12)O1—S1—N1108.23 (8)
C11—C10—S1123.11 (14)O2—S1—N1110.99 (8)
C12—C11—C10119.87 (18)O1—S1—C10109.11 (8)
C12—C11—Cl1118.30 (15)O2—S1—C10105.20 (8)
C10—C11—Cl1121.83 (14)N1—S1—C10104.35 (8)
C13—C12—C11120.47 (18)O4—S2—O3118.77 (9)
C13—C12—H12119.8O4—S2—N2109.82 (9)
C11—C12—H12119.8O3—S2—N2108.25 (8)
C14—C13—C12119.45 (18)O4—S2—C19105.17 (9)
C14—C13—H13120.3O3—S2—C19108.50 (8)
C12—C13—H13120.3N2—S2—C19105.53 (8)
C13—C14—C15121.21 (18)C8—N1—C7118.50 (15)
C13—C14—Cl2120.22 (15)C8—N1—S1120.83 (13)
C15—C14—Cl2118.56 (15)C7—N1—S1117.12 (12)
C10—C15—C14119.25 (16)C16—N2—C17118.81 (16)
C10—C15—H15120.4C16—N2—S2122.54 (12)
C14—C15—H15120.4C17—N2—S2118.14 (13)
C6—C1—C2—C30.1 (3)C22—C23—C24—C190.2 (3)
C6—C1—C2—C7179.28 (17)Cl4—C23—C24—C19179.11 (14)
C1—C2—C3—C40.7 (3)C20—C19—C24—C231.3 (3)
C7—C2—C3—C4179.9 (2)S2—C19—C24—C23177.43 (14)
C2—C3—C4—C50.7 (4)C15—C10—S1—O1124.12 (14)
C3—C4—C5—C60.1 (4)C11—C10—S1—O154.76 (16)
C4—C5—C6—C10.5 (3)C15—C10—S1—O23.50 (15)
C4—C5—C6—C16176.4 (2)C11—C10—S1—O2177.63 (14)
C2—C1—C6—C50.5 (3)C15—C10—S1—N1120.40 (14)
C2—C1—C6—C16176.41 (17)C11—C10—S1—N160.73 (16)
C1—C2—C7—N1111.1 (2)C24—C19—S2—O42.36 (16)
C3—C2—C7—N168.0 (2)C20—C19—S2—O4178.98 (15)
C15—C10—C11—C121.0 (3)C24—C19—S2—O3125.71 (14)
S1—C10—C11—C12177.85 (15)C20—C19—S2—O352.96 (17)
C15—C10—C11—Cl1178.88 (13)C24—C19—S2—N2118.46 (14)
S1—C10—C11—Cl12.3 (2)C20—C19—S2—N262.87 (17)
C10—C11—C12—C130.5 (3)C9—C8—N1—C768.6 (3)
Cl1—C11—C12—C13179.33 (16)C9—C8—N1—S189.6 (2)
C11—C12—C13—C140.4 (3)C2—C7—N1—C857.3 (2)
C12—C13—C14—C150.9 (3)C2—C7—N1—S1143.80 (14)
C12—C13—C14—Cl2178.11 (16)O1—S1—N1—C812.41 (18)
C11—C10—C15—C140.5 (3)O2—S1—N1—C8118.67 (16)
S1—C10—C15—C14178.43 (13)C10—S1—N1—C8128.51 (16)
C13—C14—C15—C100.5 (3)O1—S1—N1—C7170.82 (15)
Cl2—C14—C15—C10178.57 (13)O2—S1—N1—C739.74 (17)
C5—C6—C16—N2111.2 (2)C10—S1—N1—C773.09 (16)
C1—C6—C16—N265.6 (2)C6—C16—N2—C1760.2 (2)
C24—C19—C20—C212.0 (3)C6—C16—N2—S2111.45 (16)
S2—C19—C20—C21176.64 (16)C18—C17—N2—C1661.4 (2)
C24—C19—C20—Cl3177.23 (14)C18—C17—N2—S2126.57 (19)
S2—C19—C20—Cl34.1 (2)O4—S2—N2—C16129.76 (14)
C19—C20—C21—C221.2 (3)O3—S2—N2—C161.35 (16)
Cl3—C20—C21—C22178.04 (17)C19—S2—N2—C16117.35 (14)
C20—C21—C22—C230.3 (3)O4—S2—N2—C1741.94 (17)
C21—C22—C23—C241.0 (3)O3—S2—N2—C17173.06 (14)
C21—C22—C23—Cl4178.31 (17)C19—S2—N2—C1770.94 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.972.593.511 (2)158
C17—H17B···O1ii0.972.583.516 (3)164
C24—H24···Cl1ii0.932.833.738 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC24H24Cl4N2O4S2
Mr610.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0396 (2), 11.1512 (3), 15.5723 (3)
α, β, γ (°)87.454 (1), 83.378 (1), 87.995 (1)
V3)1384.77 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.50 × 0.35 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25271, 6905, 5380
Rint0.020
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.04
No. of reflections6905
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.972.593.511 (2)158
C17—H17B···O1ii0.972.583.516 (3)164
C24—H24···Cl1ii0.932.833.738 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationEjaz, Khan, I. U., Ahmad, H. & Harrison, W. T. A. (2011a). Acta Cryst. E67, o3037.  Web of Science CSD CrossRef IUCr Journals
First citationEjaz, Khan, I. U., Ahmad, H., Harrison, W. T. A. & Sheikh, T. A. (2011b). Acta Cryst. E67, o3038.  Web of Science CSD CrossRef IUCr Journals
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds