supplementary materials


su2337 scheme

Acta Cryst. (2012). E68, o15    [ doi:10.1107/S1600536811045326 ]

2,2',5,5'-Tetrachloro-N,N'-diethyl-N,N'-[benzene-1,3-diylbis(methylene)]dibenzenesulfonamide

Ejaz, I. U. Khan, T. A. Sheikh and W. T. A. Harrison

Abstract top

In the title compound, C24H24Cl4N2O4S2, the dihedral angles between the central benzene ring and the pendant rings are 58.09 (10) and 62.59 (10)°. The dihedral angle between the pendant rings is 81.64 (9)°. Both sulfonamide groups lie to the same side of the central ring but the C-S-N-C torsion angles [73.09 (16) and -117.35 (14)] and S-N-C-C torsion angles [-143.80 (14) and -111.45 (16)°] differ significantly for the two pendant chains. The N atoms are close to planar (bond angle sums = 356.4 and 359.5°). In the crystal, weak C-H...O and C-H...Cl interactions link the molecules.

Comment top

As part of our ongoing studies of symmetrical aryl sulfonamides (Ejaz et al., 2011a,b), the synthesis and structure of the title compound are described herein.

In the title compound (Fig. 1), the dihedral angles between the central (C1-C6) benzene ring and the pendant (C10-C15) and (C19-C24) rings are 58.09 (1) and 62.59 (10)°, respectively. The equivalent angle between the pendant rings is 81.64 (9)°. Both sulfonamide groups lie to the same side of the central ring, but the C10—S1—N1—C7 and C19—S2—N2—C16 torsion angles [73.09 (16) and -117.35 (14)°, respectively] and the S1—N1—C7—C2 and S2—N2—C16—C6 torsion angles [-143.80 (14) and -111.45 (16)°, respectively] differ significantly for the two pendant chains. The conformations of the ethyl side chains are also different: the S1—N1—C8—C9 and S2—N2—C17—C18 torsion angles are -89.6 (2) and -126.57 (19)°, respectively. The nitrogen atoms are close to planar (bond angle sums = 356.4 and 359.5° for N1 and N2, respectively), which seems to indicate a valence state close to sp2 hybridization, as also seen in a related structure (Ejaz et al., 2011a).

In the crystal, weak C—H···O and C—H···Cl interactions link the molecules (Table 1).

Related literature top

For related structures, see: Ejaz et al. (2011a,b).

Experimental top

A mixture of N,N'-(benzene-1,3-diyldimethanediyl)bis(2,5-dichlorobenzenesulfonamide) (0.3 g; 0.5 mmol), sodium hydride (0.25 g; 0.9 mmol) and N,N-dimethylformamide (10.0 ml) was stirred in a 100-ml round bottom flask at room temperature for half an hour followed by the addition of ethyl iodide (0.15 g; 0.9 mmol). The reaction mixture was further stirred for five hours, and its completion was monitored by TLC. After completion, the contents were poured over crushed ice. The precipitated product was isolated, washed and crystallized from methanol to yield colourless block-like crystals of the title compound.

Refinement top

The hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 50% displacement ellipsoids and the numbering scheme.
2,2',5,5'-Tetrachloro-N,N'-diethyl-N,N'- [benzene-1,3-diylbis(methylene)]dibenzenesulfonamide top
Crystal data top
C24H24Cl4N2O4S2Z = 2
Mr = 610.37F(000) = 628
Triclinic, P1Dx = 1.464 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0396 (2) ÅCell parameters from 6905 reflections
b = 11.1512 (3) Åθ = 2.2–28.1°
c = 15.5723 (3) ŵ = 0.61 mm1
α = 87.454 (1)°T = 296 K
β = 83.378 (1)°Chnnk, colourless
γ = 87.995 (1)°0.50 × 0.35 × 0.30 mm
V = 1384.77 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5380 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
graphiteθmax = 28.4°, θmin = 3.0°
ω scansh = 810
25271 measured reflectionsk = 1414
6905 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4193P]
where P = (Fo2 + 2Fc2)/3
6905 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C24H24Cl4N2O4S2γ = 87.995 (1)°
Mr = 610.37V = 1384.77 (6) Å3
Triclinic, P1Z = 2
a = 8.0396 (2) ÅMo Kα radiation
b = 11.1512 (3) ŵ = 0.61 mm1
c = 15.5723 (3) ÅT = 296 K
α = 87.454 (1)°0.50 × 0.35 × 0.30 mm
β = 83.378 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5380 reflections with I > 2σ(I)
25271 measured reflectionsRint = 0.020
6905 independent reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.47 e Å3
S = 1.04Δρmin = 0.38 e Å3
6905 reflectionsAbsolute structure: ?
327 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6756 (2)0.63163 (16)0.43821 (11)0.0454 (4)
H10.56230.62420.43330.055*
C20.7280 (3)0.63672 (17)0.51940 (12)0.0502 (4)
C30.8970 (3)0.6480 (2)0.52549 (15)0.0695 (6)
H30.93400.65250.57970.083*
C41.0103 (3)0.6527 (3)0.45304 (17)0.0776 (7)
H41.12360.65940.45830.093*
C50.9572 (3)0.6475 (2)0.37192 (14)0.0622 (5)
H51.03470.65090.32280.075*
C60.7890 (2)0.63737 (16)0.36384 (11)0.0452 (4)
C70.6016 (3)0.63174 (18)0.59876 (12)0.0579 (5)
H7A0.49350.61130.58250.069*
H7B0.63590.56960.63920.069*
C80.5407 (3)0.85534 (19)0.58997 (13)0.0571 (5)
H8A0.61710.86070.53710.069*
H8B0.55530.92560.62250.069*
C90.3646 (4)0.8577 (3)0.5668 (2)0.0967 (9)
H9A0.34630.92740.53040.145*
H9B0.28750.86030.61870.145*
H9C0.34730.78670.53670.145*
C100.75316 (19)0.69614 (16)0.77750 (10)0.0395 (3)
C110.8994 (2)0.75963 (17)0.75576 (12)0.0462 (4)
C121.0466 (2)0.71855 (19)0.78590 (14)0.0567 (5)
H121.14380.76140.77170.068*
C131.0506 (2)0.6145 (2)0.83684 (14)0.0578 (5)
H131.14990.58730.85740.069*
C140.9069 (2)0.55140 (17)0.85701 (12)0.0476 (4)
C150.7572 (2)0.59124 (16)0.82812 (11)0.0417 (4)
H150.66050.54790.84260.050*
C160.7269 (2)0.63890 (16)0.27608 (11)0.0462 (4)
H16A0.82160.63380.23170.055*
H16B0.65860.56970.27240.055*
C170.7074 (3)0.86554 (18)0.26202 (15)0.0604 (5)
H17A0.74580.87390.31820.073*
H17B0.62510.92950.25380.073*
C180.8521 (4)0.8787 (3)0.1935 (2)0.0934 (9)
H18A0.88940.95980.19100.140*
H18B0.81810.86020.13860.140*
H18C0.94190.82460.20690.140*
C190.4012 (2)0.80340 (16)0.14908 (10)0.0414 (4)
C200.4657 (2)0.74445 (17)0.07480 (11)0.0470 (4)
C210.4306 (3)0.7893 (2)0.00540 (12)0.0597 (5)
H210.47220.74890.05470.072*
C220.3354 (3)0.8928 (2)0.01335 (13)0.0620 (5)
H220.31190.92230.06760.074*
C230.2751 (2)0.95234 (18)0.05987 (12)0.0514 (4)
C240.3068 (2)0.90861 (17)0.14088 (11)0.0458 (4)
H240.26490.94970.18980.055*
S10.55636 (5)0.74464 (4)0.74476 (3)0.04106 (11)
S20.42957 (6)0.74915 (4)0.25594 (3)0.04402 (11)
N10.5864 (2)0.74805 (14)0.64078 (9)0.0489 (4)
N20.62753 (19)0.74925 (13)0.26098 (10)0.0475 (3)
O10.51855 (17)0.86403 (12)0.77167 (9)0.0560 (3)
O20.44311 (14)0.65269 (12)0.77704 (8)0.0515 (3)
O30.37690 (17)0.62781 (12)0.26631 (9)0.0563 (3)
O40.34712 (19)0.83655 (14)0.31150 (8)0.0622 (4)
Cl10.90284 (7)0.88984 (5)0.69119 (4)0.06287 (14)
Cl20.91046 (7)0.41825 (5)0.91822 (4)0.06768 (16)
Cl30.59191 (7)0.61629 (5)0.07875 (3)0.06285 (15)
Cl40.15880 (8)1.08554 (5)0.05174 (4)0.07195 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0522 (10)0.0428 (10)0.0418 (9)0.0030 (7)0.0065 (7)0.0035 (7)
C20.0699 (12)0.0418 (10)0.0399 (9)0.0025 (8)0.0106 (8)0.0043 (7)
C30.0735 (14)0.0824 (16)0.0571 (13)0.0149 (12)0.0270 (11)0.0146 (11)
C40.0519 (12)0.107 (2)0.0773 (16)0.0142 (12)0.0204 (11)0.0194 (14)
C50.0492 (11)0.0776 (15)0.0591 (12)0.0081 (10)0.0047 (9)0.0072 (11)
C60.0494 (9)0.0430 (10)0.0429 (9)0.0052 (7)0.0054 (7)0.0032 (7)
C70.0879 (15)0.0477 (11)0.0384 (9)0.0080 (10)0.0066 (9)0.0019 (8)
C80.0692 (13)0.0528 (11)0.0463 (10)0.0054 (9)0.0006 (9)0.0103 (9)
C90.0856 (19)0.106 (2)0.099 (2)0.0127 (16)0.0304 (16)0.0276 (18)
C100.0340 (7)0.0486 (10)0.0360 (8)0.0002 (7)0.0017 (6)0.0088 (7)
C110.0416 (9)0.0473 (10)0.0486 (10)0.0037 (7)0.0021 (7)0.0083 (8)
C120.0345 (8)0.0634 (13)0.0716 (13)0.0056 (8)0.0007 (8)0.0081 (10)
C130.0368 (9)0.0688 (13)0.0688 (13)0.0047 (8)0.0101 (8)0.0098 (10)
C140.0446 (9)0.0508 (11)0.0478 (10)0.0054 (8)0.0077 (7)0.0067 (8)
C150.0363 (8)0.0506 (10)0.0383 (8)0.0013 (7)0.0034 (6)0.0068 (7)
C160.0526 (10)0.0469 (10)0.0382 (9)0.0034 (8)0.0012 (7)0.0060 (7)
C170.0711 (13)0.0451 (11)0.0688 (13)0.0084 (9)0.0234 (11)0.0018 (9)
C180.098 (2)0.0845 (19)0.097 (2)0.0371 (16)0.0047 (16)0.0179 (16)
C190.0412 (8)0.0490 (10)0.0340 (8)0.0053 (7)0.0023 (6)0.0035 (7)
C200.0479 (9)0.0528 (11)0.0394 (9)0.0017 (8)0.0001 (7)0.0069 (8)
C210.0703 (13)0.0731 (14)0.0347 (9)0.0004 (11)0.0004 (8)0.0085 (9)
C220.0715 (13)0.0772 (15)0.0375 (10)0.0008 (11)0.0103 (9)0.0033 (9)
C230.0531 (10)0.0530 (11)0.0486 (10)0.0030 (8)0.0100 (8)0.0023 (8)
C240.0452 (9)0.0519 (11)0.0406 (9)0.0028 (8)0.0044 (7)0.0054 (8)
S10.0364 (2)0.0499 (3)0.0361 (2)0.00241 (17)0.00185 (15)0.00196 (17)
S20.0484 (2)0.0491 (3)0.0329 (2)0.00132 (18)0.00197 (16)0.00125 (17)
N10.0683 (10)0.0431 (8)0.0353 (7)0.0015 (7)0.0079 (7)0.0006 (6)
N20.0529 (8)0.0411 (8)0.0501 (8)0.0039 (6)0.0123 (7)0.0002 (6)
O10.0568 (8)0.0580 (8)0.0521 (8)0.0143 (6)0.0022 (6)0.0118 (6)
O20.0339 (6)0.0686 (9)0.0508 (7)0.0053 (6)0.0034 (5)0.0098 (6)
O30.0571 (8)0.0549 (8)0.0549 (8)0.0138 (6)0.0022 (6)0.0074 (6)
O40.0727 (9)0.0730 (10)0.0378 (7)0.0149 (7)0.0046 (6)0.0090 (6)
Cl10.0584 (3)0.0556 (3)0.0720 (3)0.0115 (2)0.0042 (2)0.0037 (2)
Cl20.0640 (3)0.0647 (3)0.0758 (4)0.0053 (2)0.0212 (3)0.0105 (3)
Cl30.0713 (3)0.0645 (3)0.0507 (3)0.0141 (3)0.0007 (2)0.0128 (2)
Cl40.0829 (4)0.0666 (4)0.0675 (3)0.0136 (3)0.0205 (3)0.0039 (3)
Geometric parameters (Å, °) top
C1—C21.382 (2)C14—C151.385 (2)
C1—C61.389 (3)C14—Cl21.730 (2)
C1—H10.9300C15—H150.9300
C2—C31.383 (3)C16—N21.468 (2)
C2—C71.507 (3)C16—H16A0.9700
C3—C41.366 (3)C16—H16B0.9700
C3—H30.9300C17—N21.469 (2)
C4—C51.383 (3)C17—C181.491 (4)
C4—H40.9300C17—H17A0.9700
C5—C61.381 (3)C17—H17B0.9700
C5—H50.9300C18—H18A0.9600
C6—C161.507 (2)C18—H18B0.9600
C7—N11.474 (2)C18—H18C0.9600
C7—H7A0.9700C19—C241.384 (2)
C7—H7B0.9700C19—C201.394 (2)
C8—N11.465 (2)C19—S21.7820 (17)
C8—C91.499 (3)C20—C211.380 (3)
C8—H8A0.9700C20—Cl31.726 (2)
C8—H8B0.9700C21—C221.371 (3)
C9—H9A0.9600C21—H210.9300
C9—H9B0.9600C22—C231.376 (3)
C9—H9C0.9600C22—H220.9300
C10—C151.383 (2)C23—C241.380 (3)
C10—C111.394 (2)C23—Cl41.735 (2)
C10—S11.7769 (16)C24—H240.9300
C11—C121.379 (3)S1—O11.4256 (14)
C11—Cl11.7282 (19)S1—O21.4307 (13)
C12—C131.378 (3)S1—N11.6082 (15)
C12—H120.9300S2—O41.4267 (14)
C13—C141.372 (3)S2—O31.4286 (14)
C13—H130.9300S2—N21.6025 (16)
C2—C1—C6121.26 (18)N2—C16—C6110.74 (14)
C2—C1—H1119.4N2—C16—H16A109.5
C6—C1—H1119.4C6—C16—H16A109.5
C1—C2—C3118.56 (19)N2—C16—H16B109.5
C1—C2—C7119.97 (19)C6—C16—H16B109.5
C3—C2—C7121.47 (18)H16A—C16—H16B108.1
C4—C3—C2120.9 (2)N2—C17—C18112.5 (2)
C4—C3—H3119.6N2—C17—H17A109.1
C2—C3—H3119.6C18—C17—H17A109.1
C3—C4—C5120.3 (2)N2—C17—H17B109.1
C3—C4—H4119.8C18—C17—H17B109.1
C5—C4—H4119.8H17A—C17—H17B107.8
C6—C5—C4120.1 (2)C17—C18—H18A109.5
C6—C5—H5120.0C17—C18—H18B109.5
C4—C5—H5120.0H18A—C18—H18B109.5
C5—C6—C1118.91 (17)C17—C18—H18C109.5
C5—C6—C16121.04 (17)H18A—C18—H18C109.5
C1—C6—C16119.97 (16)H18B—C18—H18C109.5
N1—C7—C2110.85 (16)C24—C19—C20119.20 (16)
N1—C7—H7A109.5C24—C19—S2117.24 (13)
C2—C7—H7A109.5C20—C19—S2123.55 (14)
N1—C7—H7B109.5C21—C20—C19119.87 (18)
C2—C7—H7B109.5C21—C20—Cl3117.85 (15)
H7A—C7—H7B108.1C19—C20—Cl3122.28 (14)
N1—C8—C9114.22 (19)C22—C21—C20120.85 (19)
N1—C8—H8A108.7C22—C21—H21119.6
C9—C8—H8A108.7C20—C21—H21119.6
N1—C8—H8B108.7C21—C22—C23119.20 (18)
C9—C8—H8B108.7C21—C22—H22120.4
H8A—C8—H8B107.6C23—C22—H22120.4
C8—C9—H9A109.5C22—C23—C24121.06 (19)
C8—C9—H9B109.5C22—C23—Cl4120.31 (15)
H9A—C9—H9B109.5C24—C23—Cl4118.63 (16)
C8—C9—H9C109.5C23—C24—C19119.79 (17)
H9A—C9—H9C109.5C23—C24—H24120.1
H9B—C9—H9C109.5C19—C24—H24120.1
C15—C10—C11119.74 (15)O1—S1—O2118.08 (8)
C15—C10—S1117.14 (12)O1—S1—N1108.23 (8)
C11—C10—S1123.11 (14)O2—S1—N1110.99 (8)
C12—C11—C10119.87 (18)O1—S1—C10109.11 (8)
C12—C11—Cl1118.30 (15)O2—S1—C10105.20 (8)
C10—C11—Cl1121.83 (14)N1—S1—C10104.35 (8)
C13—C12—C11120.47 (18)O4—S2—O3118.77 (9)
C13—C12—H12119.8O4—S2—N2109.82 (9)
C11—C12—H12119.8O3—S2—N2108.25 (8)
C14—C13—C12119.45 (18)O4—S2—C19105.17 (9)
C14—C13—H13120.3O3—S2—C19108.50 (8)
C12—C13—H13120.3N2—S2—C19105.53 (8)
C13—C14—C15121.21 (18)C8—N1—C7118.50 (15)
C13—C14—Cl2120.22 (15)C8—N1—S1120.83 (13)
C15—C14—Cl2118.56 (15)C7—N1—S1117.12 (12)
C10—C15—C14119.25 (16)C16—N2—C17118.81 (16)
C10—C15—H15120.4C16—N2—S2122.54 (12)
C14—C15—H15120.4C17—N2—S2118.14 (13)
C6—C1—C2—C30.1 (3)C22—C23—C24—C190.2 (3)
C6—C1—C2—C7179.28 (17)Cl4—C23—C24—C19179.11 (14)
C1—C2—C3—C40.7 (3)C20—C19—C24—C231.3 (3)
C7—C2—C3—C4179.9 (2)S2—C19—C24—C23177.43 (14)
C2—C3—C4—C50.7 (4)C15—C10—S1—O1124.12 (14)
C3—C4—C5—C60.1 (4)C11—C10—S1—O154.76 (16)
C4—C5—C6—C10.5 (3)C15—C10—S1—O23.50 (15)
C4—C5—C6—C16176.4 (2)C11—C10—S1—O2177.63 (14)
C2—C1—C6—C50.5 (3)C15—C10—S1—N1120.40 (14)
C2—C1—C6—C16176.41 (17)C11—C10—S1—N160.73 (16)
C1—C2—C7—N1111.1 (2)C24—C19—S2—O42.36 (16)
C3—C2—C7—N168.0 (2)C20—C19—S2—O4178.98 (15)
C15—C10—C11—C121.0 (3)C24—C19—S2—O3125.71 (14)
S1—C10—C11—C12177.85 (15)C20—C19—S2—O352.96 (17)
C15—C10—C11—Cl1178.88 (13)C24—C19—S2—N2118.46 (14)
S1—C10—C11—Cl12.3 (2)C20—C19—S2—N262.87 (17)
C10—C11—C12—C130.5 (3)C9—C8—N1—C768.6 (3)
Cl1—C11—C12—C13179.33 (16)C9—C8—N1—S189.6 (2)
C11—C12—C13—C140.4 (3)C2—C7—N1—C857.3 (2)
C12—C13—C14—C150.9 (3)C2—C7—N1—S1143.80 (14)
C12—C13—C14—Cl2178.11 (16)O1—S1—N1—C812.41 (18)
C11—C10—C15—C140.5 (3)O2—S1—N1—C8118.67 (16)
S1—C10—C15—C14178.43 (13)C10—S1—N1—C8128.51 (16)
C13—C14—C15—C100.5 (3)O1—S1—N1—C7170.82 (15)
Cl2—C14—C15—C10178.57 (13)O2—S1—N1—C739.74 (17)
C5—C6—C16—N2111.2 (2)C10—S1—N1—C773.09 (16)
C1—C6—C16—N265.6 (2)C6—C16—N2—C1760.2 (2)
C24—C19—C20—C212.0 (3)C6—C16—N2—S2111.45 (16)
S2—C19—C20—C21176.64 (16)C18—C17—N2—C1661.4 (2)
C24—C19—C20—Cl3177.23 (14)C18—C17—N2—S2126.57 (19)
S2—C19—C20—Cl34.1 (2)O4—S2—N2—C16129.76 (14)
C19—C20—C21—C221.2 (3)O3—S2—N2—C161.35 (16)
Cl3—C20—C21—C22178.04 (17)C19—S2—N2—C16117.35 (14)
C20—C21—C22—C230.3 (3)O4—S2—N2—C1741.94 (17)
C21—C22—C23—C241.0 (3)O3—S2—N2—C17173.06 (14)
C21—C22—C23—Cl4178.31 (17)C19—S2—N2—C1770.94 (16)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.972.593.511 (2)158
C17—H17B···O1ii0.972.583.516 (3)164
C24—H24···Cl1ii0.932.833.738 (2)166
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.972.593.511 (2)158
C17—H17B···O1ii0.972.583.516 (3)164
C24—H24···Cl1ii0.932.833.738 (2)166
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.
Acknowledgements top

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

references
References top

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Ejaz, Khan, I. U., Ahmad, H. & Harrison, W. T. A. (2011a). Acta Cryst. E67, o3037.

Ejaz, Khan, I. U., Ahmad, H., Harrison, W. T. A. & Sheikh, T. A. (2011b). Acta Cryst. E67, o3038.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.