supplementary materials


su2344 scheme

Acta Cryst. (2012). E68, o122    [ doi:10.1107/S1600536811052123 ]

(E)-1-{4-[Bis(4-bromophenyl)methyl]piperazin-1-yl}-3-(4-ethoxy-3-methoxyphenyl)prop-2-en-1-one

Y. Zhong, X. P. Zhang and B. Wu

Abstract top

In the title molecule, C29H30Br2N2O3, the piperazine ring has a chair conformation and the C=C double bond has an E conformation. The dihedral angle between the bromobenzene rings is 79.1 (3)°. In the crystal, molecules are linked through C-H...O and C-H...Br hydrogen bonds.

Comment top

As a continuation of our study of cinnamic acid derivatives (Teng et al., 2011; Zhong et al., 2011), we report herein on the synthesis and crystal structure of the title compound (Fig. 1). All the bond lengths and angles are normal and correspond to those observed in related compounds (Teng et al., 2011; Zhong et al., 2011). The molecule exists in an E configulation with respect to the C19C20 ethene bond [1.321 (7) Å]. The piperazine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.543 (6) Å, θ = 5.5 (6) °, φ = 329 (7) °.

In the crystal, molecules are linked by intermolecular C—H···O and C—H···Br hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For a related structure and background to cinnamic acid derivatives, see: Teng et al. (2011); Zhong et al. (2011). For further synthetic details, see: Wu et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The synthesis follows the method of Wu et al. (2008). The title compound was prepared by stirring a mixture of (E)-3-(4-ethoxy-3-metoxyphenyl)acrylic acid (0.889 g; 4 mmol), dimethyl sulfoxide (2 ml) and dichloromethane (30 ml) for 6 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in acetone (15 ml) and reacted with 1-(bis(4-bromophenyl)methyl)piperazine (2.461 g; 6 mmol) in the presence of triethylamine (5 ml) for 12 h at room temperature. The resultant mixture was cooled. The title compound thus obtained was filtered and was recrystallized from ethanol. The colourless single crystals of the title compound used in the x-ray diffraction studies were grown in ethanol by slow evaporation at room temperature.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96, 0.97 and 0.98 Å for CH(aromatic), CH3, CH2 and CH(methine) H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and numbering scheme of the title molecule. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. The C—H···O and C—H···Br hydrogen bonds are shown as dashed lines.
(E)-1-{4-[Bis(4-bromophenyl)methyl]piperazin-1-yl}-3-(4-ethoxy-3- methoxyphenyl)prop-2-en-1-one top
Crystal data top
C29H30Br2N2O3Z = 2
Mr = 614.37F(000) = 624
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5520 (17) ÅCell parameters from 25 reflections
b = 10.355 (2) Åθ = 9–13°
c = 16.361 (3) ŵ = 2.90 mm1
α = 92.85 (3)°T = 293 K
β = 100.52 (3)°Block, colourless
γ = 95.25 (3)°0.20 × 0.10 × 0.10 mm
V = 1415.3 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2233 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.098
graphiteθmax = 25.4°, θmin = 1.3°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.595, Tmax = 0.761l = 1919
5569 measured reflections3 standard reflections every 200 reflections
5190 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
5190 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C29H30Br2N2O3γ = 95.25 (3)°
Mr = 614.37V = 1415.3 (5) Å3
Triclinic, P1Z = 2
a = 8.5520 (17) ÅMo Kα radiation
b = 10.355 (2) ŵ = 2.90 mm1
c = 16.361 (3) ÅT = 293 K
α = 92.85 (3)°0.20 × 0.10 × 0.10 mm
β = 100.52 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2233 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.098
Tmin = 0.595, Tmax = 0.761θmax = 25.4°
5569 measured reflections3 standard reflections every 200 reflections
5190 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.28 e Å3
S = 1.01Δρmin = 0.29 e Å3
5190 reflectionsAbsolute structure: ?
325 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.65376 (13)0.34766 (12)0.57637 (6)0.1418 (5)
N10.9260 (5)0.3258 (4)0.2058 (3)0.0541 (12)
O11.3079 (5)0.4867 (4)0.0380 (3)0.0802 (14)
C10.7349 (9)0.3675 (6)0.3323 (4)0.083 (2)
H1A0.72590.42410.28970.099*
Br20.20032 (9)0.00602 (9)0.02290 (5)0.0987 (4)
N21.1790 (6)0.4652 (5)0.1444 (3)0.0610 (14)
O21.9023 (5)0.8508 (5)0.3993 (3)0.0900 (16)
C20.6782 (10)0.3959 (8)0.4101 (5)0.107 (3)
H2A0.62230.46760.41620.128*
O32.1174 (5)0.9315 (4)0.3219 (2)0.0730 (13)
C30.7089 (10)0.3160 (9)0.4728 (4)0.092 (3)
C40.7929 (9)0.2026 (9)0.4636 (4)0.102 (3)
H4A0.81590.14950.50760.123*
C50.8378 (7)0.1751 (7)0.3896 (4)0.075 (2)
H5A0.89280.10340.38200.091*
C60.7996 (6)0.2565 (5)0.3260 (4)0.0529 (15)
C70.8396 (8)0.2183 (7)0.2417 (4)0.080 (2)
H7A0.91000.14860.24990.096*
C80.6895 (7)0.1635 (6)0.1820 (4)0.0630 (17)
C90.6436 (7)0.0372 (6)0.1727 (4)0.0648 (17)
H9A0.71300.01760.20010.078*
C100.5035 (7)0.0188 (5)0.1265 (4)0.0641 (18)
H10A0.47720.10830.12270.077*
C110.4077 (6)0.0579 (6)0.0878 (3)0.0526 (14)
C120.4392 (8)0.2000 (6)0.0887 (4)0.083 (2)
H12A0.36870.25290.06010.100*
C130.5895 (8)0.2469 (6)0.1383 (4)0.079 (2)
H13A0.62250.33540.14190.095*
C140.9581 (8)0.2932 (7)0.1231 (4)0.083 (2)
H14A1.02730.22370.12630.100*
H14B0.85850.26220.08590.100*
C151.0330 (8)0.4036 (6)0.0898 (4)0.083 (2)
H15A0.95710.46770.07930.099*
H15B1.05920.37600.03680.099*
C161.1500 (8)0.4937 (6)0.2289 (4)0.085 (2)
H16A1.08020.56250.22820.103*
H16B1.25040.52350.26580.103*
C171.0756 (7)0.3766 (6)0.2603 (4)0.0732 (19)
H17A1.14910.31020.26470.088*
H17B1.05530.39790.31560.088*
C181.3040 (7)0.5159 (7)0.1128 (4)0.0684 (18)
C191.4415 (8)0.5873 (6)0.1696 (4)0.074 (2)
H19A1.43220.61160.22380.089*
C201.5779 (7)0.6173 (6)0.1446 (4)0.074 (2)
H20A1.58250.58530.09110.089*
C211.7193 (6)0.6923 (5)0.1888 (3)0.0443 (13)
C221.8438 (7)0.7364 (6)0.1511 (4)0.0641 (17)
H22A1.83930.71090.09530.077*
C231.9733 (7)0.8157 (7)0.1922 (4)0.079 (2)
H23A2.05020.84750.16270.094*
C241.9934 (6)0.8501 (6)0.2765 (4)0.0588 (16)
C251.8700 (6)0.8058 (6)0.3175 (4)0.0539 (15)
C261.7401 (6)0.7287 (5)0.2764 (3)0.0533 (15)
H26A1.66210.69840.30560.064*
C271.7825 (8)0.8123 (7)0.4451 (4)0.096 (2)
H27A1.81320.84940.50140.144*
H27B1.77010.71920.44530.144*
H27C1.68310.84200.41980.144*
C282.2484 (7)0.9702 (7)0.2786 (4)0.078 (2)
H28A2.21101.01690.23010.094*
H28B2.29750.89510.26140.094*
C292.3669 (8)1.0595 (7)0.3454 (4)0.104 (3)
H29A2.45911.08900.32300.156*
H29B2.39931.01190.39350.156*
H29C2.31561.13310.36120.156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1442 (9)0.2104 (13)0.0742 (6)0.0019 (8)0.0470 (6)0.0167 (7)
N10.058 (3)0.061 (3)0.040 (2)0.009 (2)0.007 (2)0.001 (2)
O10.090 (3)0.084 (3)0.061 (3)0.029 (3)0.017 (3)0.014 (3)
C10.135 (7)0.050 (4)0.071 (5)0.003 (4)0.038 (5)0.020 (4)
Br20.0657 (5)0.1419 (8)0.0789 (5)0.0321 (5)0.0134 (4)0.0091 (5)
N20.059 (3)0.071 (3)0.049 (3)0.019 (3)0.016 (3)0.000 (3)
O20.068 (3)0.134 (4)0.069 (3)0.025 (3)0.026 (3)0.028 (3)
C20.120 (7)0.109 (7)0.090 (6)0.003 (6)0.022 (6)0.006 (6)
O30.059 (3)0.107 (4)0.051 (2)0.017 (2)0.013 (2)0.026 (2)
C30.106 (6)0.113 (7)0.046 (4)0.034 (5)0.018 (4)0.017 (5)
C40.106 (7)0.148 (9)0.046 (4)0.003 (6)0.000 (4)0.005 (5)
C50.065 (4)0.094 (5)0.064 (4)0.004 (4)0.001 (4)0.033 (4)
C60.057 (3)0.035 (3)0.065 (4)0.018 (3)0.015 (3)0.016 (3)
C70.074 (5)0.097 (6)0.066 (4)0.017 (4)0.012 (4)0.020 (4)
C80.067 (4)0.065 (4)0.058 (4)0.009 (3)0.014 (3)0.001 (3)
C90.067 (4)0.074 (4)0.058 (4)0.015 (3)0.012 (3)0.030 (4)
C100.075 (4)0.044 (4)0.081 (5)0.014 (3)0.024 (4)0.031 (3)
C110.048 (3)0.058 (3)0.056 (4)0.007 (3)0.022 (3)0.004 (3)
C120.090 (5)0.080 (5)0.080 (5)0.027 (4)0.001 (4)0.034 (4)
C130.094 (5)0.063 (4)0.075 (5)0.020 (4)0.009 (4)0.028 (4)
C140.085 (5)0.091 (6)0.071 (5)0.011 (4)0.019 (4)0.004 (4)
C150.083 (5)0.098 (5)0.057 (4)0.034 (4)0.002 (4)0.032 (4)
C160.106 (6)0.073 (5)0.069 (5)0.031 (4)0.015 (4)0.003 (4)
C170.066 (4)0.088 (5)0.058 (4)0.012 (4)0.005 (3)0.008 (4)
C180.050 (4)0.100 (5)0.060 (4)0.015 (3)0.013 (3)0.022 (4)
C190.083 (5)0.073 (4)0.064 (4)0.018 (4)0.012 (4)0.026 (4)
C200.065 (4)0.096 (5)0.061 (4)0.019 (4)0.020 (4)0.017 (4)
C210.044 (3)0.057 (3)0.039 (3)0.029 (3)0.007 (3)0.029 (3)
C220.074 (4)0.067 (4)0.062 (4)0.016 (3)0.029 (3)0.028 (3)
C230.046 (4)0.103 (6)0.081 (5)0.022 (4)0.013 (4)0.008 (4)
C240.039 (3)0.056 (4)0.074 (4)0.004 (3)0.011 (3)0.029 (3)
C250.039 (3)0.070 (4)0.056 (4)0.003 (3)0.018 (3)0.019 (3)
C260.040 (3)0.059 (3)0.065 (4)0.002 (2)0.010 (3)0.037 (3)
C270.099 (6)0.108 (6)0.086 (5)0.005 (5)0.034 (5)0.009 (5)
C280.046 (3)0.103 (5)0.086 (5)0.000 (4)0.015 (4)0.024 (4)
C290.088 (5)0.114 (6)0.101 (6)0.045 (5)0.028 (5)0.012 (5)
Geometric parameters (Å, °) top
Br1—C31.862 (7)C13—H13A0.9300
N1—C171.458 (6)C14—C151.438 (7)
N1—C141.458 (7)C14—H14A0.9700
N1—C71.484 (7)C14—H14B0.9700
O1—C181.254 (7)C15—H15A0.9700
C1—C61.328 (8)C15—H15B0.9700
C1—C21.469 (9)C16—C171.475 (7)
C1—H1A0.9300C16—H16A0.9700
Br2—C111.934 (5)C16—H16B0.9700
N2—C181.346 (7)C17—H17A0.9700
N2—C151.468 (7)C17—H17B0.9700
N2—C161.469 (7)C18—C191.471 (8)
O2—C251.365 (6)C19—C201.321 (7)
O2—C271.416 (7)C19—H19A0.9300
C2—C31.354 (10)C20—C211.429 (7)
C2—H2A0.9300C20—H20A0.9300
O3—C241.369 (6)C21—C221.379 (7)
O3—C281.467 (6)C21—C261.438 (7)
C3—C41.447 (11)C22—C231.364 (8)
C4—C51.360 (9)C22—H22A0.9300
C4—H4A0.9300C23—C241.383 (8)
C5—C61.384 (7)C23—H23A0.9300
C5—H5A0.9300C24—C251.406 (7)
C6—C71.524 (8)C25—C261.355 (7)
C7—C81.509 (8)C26—H26A0.9300
C7—H7A0.9800C27—H27A0.9600
C8—C91.324 (7)C27—H27B0.9600
C8—C131.400 (8)C27—H27C0.9600
C9—C101.358 (8)C28—C291.550 (8)
C9—H9A0.9300C28—H28A0.9700
C10—C111.297 (7)C28—H28B0.9700
C10—H10A0.9300C29—H29A0.9600
C11—C121.470 (8)C29—H29B0.9600
C12—C131.419 (8)C29—H29C0.9600
C12—H12A0.9300
C17—N1—C14108.8 (5)N2—C15—H15B108.8
C17—N1—C7112.4 (5)H15A—C15—H15B107.6
C14—N1—C7114.4 (5)N2—C16—C17110.5 (5)
C6—C1—C2116.4 (7)N2—C16—H16A109.5
C6—C1—H1A121.8C17—C16—H16A109.5
C2—C1—H1A121.8N2—C16—H16B109.5
C18—N2—C15121.1 (5)C17—C16—H16B109.5
C18—N2—C16126.0 (5)H16A—C16—H16B108.1
C15—N2—C16110.8 (5)N1—C17—C16111.7 (5)
C25—O2—C27114.8 (5)N1—C17—H17A109.3
C3—C2—C1118.8 (8)C16—C17—H17A109.3
C3—C2—H2A120.6N1—C17—H17B109.3
C1—C2—H2A120.6C16—C17—H17B109.3
C24—O3—C28115.8 (5)H17A—C17—H17B107.9
C2—C3—C4121.2 (7)O1—C18—N2118.5 (6)
C2—C3—Br1122.7 (8)O1—C18—C19121.9 (6)
C4—C3—Br1116.1 (6)N2—C18—C19119.0 (6)
C5—C4—C3118.8 (7)C20—C19—C18121.0 (6)
C5—C4—H4A120.6C20—C19—H19A119.5
C3—C4—H4A120.6C18—C19—H19A119.5
C4—C5—C6118.3 (7)C19—C20—C21128.7 (6)
C4—C5—H5A120.8C19—C20—H20A115.6
C6—C5—H5A120.8C21—C20—H20A115.6
C1—C6—C5125.9 (7)C22—C21—C20123.0 (5)
C1—C6—C7116.6 (6)C22—C21—C26115.3 (5)
C5—C6—C7117.5 (6)C20—C21—C26121.7 (5)
N1—C7—C8111.1 (5)C23—C22—C21122.8 (6)
N1—C7—C6113.5 (5)C23—C22—H22A118.6
C8—C7—C6109.9 (5)C21—C22—H22A118.6
N1—C7—H7A107.4C22—C23—C24121.7 (6)
C8—C7—H7A107.4C22—C23—H23A119.1
C6—C7—H7A107.4C24—C23—H23A119.1
C9—C8—C13118.1 (6)O3—C24—C23125.5 (5)
C9—C8—C7121.6 (6)O3—C24—C25117.2 (6)
C13—C8—C7120.3 (6)C23—C24—C25117.2 (5)
C8—C9—C10125.3 (6)C26—C25—O2128.0 (5)
C8—C9—H9A117.4C26—C25—C24121.0 (6)
C10—C9—H9A117.4O2—C25—C24111.0 (5)
C11—C10—C9117.1 (6)C25—C26—C21121.9 (5)
C11—C10—H10A121.4C25—C26—H26A119.0
C9—C10—H10A121.4C21—C26—H26A119.0
C10—C11—C12125.6 (6)O2—C27—H27A109.5
C10—C11—Br2122.2 (5)O2—C27—H27B109.5
C12—C11—Br2112.2 (4)H27A—C27—H27B109.5
C13—C12—C11112.1 (5)O2—C27—H27C109.5
C13—C12—H12A124.0H27A—C27—H27C109.5
C11—C12—H12A124.0H27B—C27—H27C109.5
C8—C13—C12121.8 (6)O3—C28—C29103.1 (5)
C8—C13—H13A119.1O3—C28—H28A111.1
C12—C13—H13A119.1C29—C28—H28A111.1
C15—C14—N1111.6 (6)O3—C28—H28B111.1
C15—C14—H14A109.3C29—C28—H28B111.1
N1—C14—H14A109.3H28A—C28—H28B109.1
C15—C14—H14B109.3C28—C29—H29A109.5
N1—C14—H14B109.3C28—C29—H29B109.5
H14A—C14—H14B108.0H29A—C29—H29B109.5
C14—C15—N2114.0 (5)C28—C29—H29C109.5
C14—C15—H15A108.8H29A—C29—H29C109.5
N2—C15—H15A108.8H29B—C29—H29C109.5
C14—C15—H15B108.8
C6—C1—C2—C36.4 (11)C18—N2—C15—C14144.2 (6)
C1—C2—C3—C41.2 (12)C16—N2—C15—C1451.3 (8)
C1—C2—C3—Br1176.3 (5)C18—N2—C16—C17144.8 (6)
C2—C3—C4—C51.7 (12)C15—N2—C16—C1751.7 (8)
Br1—C3—C4—C5179.4 (5)C14—N1—C17—C1659.4 (7)
C3—C4—C5—C60.5 (10)C7—N1—C17—C16172.9 (6)
C2—C1—C6—C59.3 (10)N2—C16—C17—N157.7 (8)
C2—C1—C6—C7172.6 (6)C15—N2—C18—O114.6 (10)
C4—C5—C6—C16.5 (10)C16—N2—C18—O1176.5 (6)
C4—C5—C6—C7175.5 (6)C15—N2—C18—C19174.4 (6)
C17—N1—C7—C8177.2 (5)C16—N2—C18—C1912.4 (10)
C14—N1—C7—C852.5 (8)O1—C18—C19—C203.6 (10)
C17—N1—C7—C658.3 (7)N2—C18—C19—C20167.1 (6)
C14—N1—C7—C6177.0 (5)C18—C19—C20—C21175.7 (6)
C1—C6—C7—N147.2 (8)C19—C20—C21—C22168.1 (7)
C5—C6—C7—N1130.9 (6)C19—C20—C21—C2611.0 (10)
C1—C6—C7—C877.8 (7)C20—C21—C22—C23175.1 (6)
C5—C6—C7—C8104.0 (7)C26—C21—C22—C234.0 (8)
N1—C7—C8—C9140.8 (6)C21—C22—C23—C244.5 (10)
C6—C7—C8—C992.7 (8)C28—O3—C24—C238.4 (9)
N1—C7—C8—C1343.0 (9)C28—O3—C24—C25176.7 (5)
C6—C7—C8—C1383.4 (7)C22—C23—C24—O3178.3 (5)
C13—C8—C9—C102.7 (10)C22—C23—C24—C253.4 (10)
C7—C8—C9—C10173.6 (6)C27—O2—C25—C260.9 (9)
C8—C9—C10—C110.6 (10)C27—O2—C25—C24179.1 (5)
C9—C10—C11—C121.0 (9)O3—C24—C25—C26177.7 (5)
C9—C10—C11—Br2177.6 (4)C23—C24—C25—C262.3 (9)
C10—C11—C12—C130.4 (9)O3—C24—C25—O22.3 (8)
Br2—C11—C12—C13178.3 (5)C23—C24—C25—O2177.6 (6)
C9—C8—C13—C123.2 (10)O2—C25—C26—C21177.8 (5)
C7—C8—C13—C12173.1 (6)C24—C25—C26—C212.2 (8)
C11—C12—C13—C81.7 (9)C22—C21—C26—C252.9 (7)
C17—N1—C14—C1557.0 (7)C20—C21—C26—C25176.3 (5)
C7—N1—C14—C15176.4 (5)C24—O3—C28—C29179.9 (5)
N1—C14—C15—N254.4 (8)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.932.553.358 (8)145
C20—H20A···O1ii0.932.573.461 (8)161
C16—H16B···Br1iii0.972.793.562 (7)137
Symmetry codes: (i) x−1, y, z; (ii) −x+3, −y+1, −z; (iii) −x+2, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.932.553.358 (8)145
C20—H20A···O1ii0.932.573.461 (8)161
C16—H16B···Br1iii0.972.793.562 (7)137
Symmetry codes: (i) x−1, y, z; (ii) −x+3, −y+1, −z; (iii) −x+2, −y+1, −z+1.
Acknowledgements top

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK2010538).

references
References top

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Teng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.

Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.

Zhong, Y., Zhang, X. P. & Wu, B. (2011). Acta Cryst. E67, o3358.