organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acridin-10-ium 6-carb­­oxy­pyridine-2-carboxyl­ate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 10 December 2011; accepted 12 December 2011; online 21 December 2011)

The title compound, C13H10N+·C7H4NO4, consists of a protonated acridinium cation and a 6-carb­oxy­pyridine-2-carboxyl­ate monoanion. The carboxyl­ate group of the anion appears to be delocalized on the basis of the nearly equivalent C—O bond lengths. In the crystal, the anions are connected by strong O—H⋯O hydrogen bonds, forming chains along the b axis. The acridinium cations are linked to the anionic chains by strong N—H⋯O hydrogen bonds between the carboxyl­ate group of the anion and the N—H group of the cation. Along the b axis, successive chains stack in opposite directions. Weak inter­molecular C—H⋯O hydrogen bonds further stabilize the crystal structure.

Related literature

For related crystal structures of acridinium compounds with carboxyl­ate, see: Shaameri et al. (2001[Shaameri, Z., Shan, N. & Jones, W. (2001). Acta Cryst. E57, o945-o946.]); Derikvand et al. (2009[Derikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173.]); Attar Gharamaleki et al. (2010[Attar Gharamaleki, J., Derikvand, Z. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, o2231.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N+·C7H4NO4

  • Mr = 346.33

  • Monoclinic, C 2/c

  • a = 16.6817 (8) Å

  • b = 8.2872 (4) Å

  • c = 23.7289 (12) Å

  • β = 105.582 (1)°

  • V = 3159.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.29 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 1.000

  • 11354 measured reflections

  • 3894 independent reflections

  • 2198 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.06

  • 3894 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C19 1.314 (2)
O2—C19 1.206 (2)
O3—C20 1.255 (2)
O4—C20 1.246 (3)
O2—C19—O1 124.6 (2)
O4—C20—O3 125.0 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.92 1.70 2.602 (2) 165
O1—H1O⋯O4ii 0.84 1.73 2.535 (2) 160
C7—H7⋯O1iii 0.95 2.37 3.132 (2) 137
C10—H10⋯O3iv 0.95 2.49 3.435 (3) 171
C12—H12⋯O4i 0.95 2.56 3.466 (3) 160
C17—H17⋯O2v 0.95 2.44 3.387 (3) 171
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Proton-transfer compounds of acridine and carboxylic acid, such as benzene-1,3-dicarboxylic acid (Shaameri et al., 2001), benzene-1,3,5-tricarboxylic acid (Derikvand et al., 2009) and pyrazine-2,3-dicarboxylic acid (Attar Gharamaleki et al., 2010), have been investigated previously.

The title compound, C13H10N+.C7H4NO4-, consists of a protonated acridinium cation and a 6-carboxypyridine-2-carboxylate monoanion (Fig.1). The C—O bond lengths of the COOH group of the anion are somewhat different, but the C—O bond lengths of the carboxylate group are nearly equivalent (Table 1). On the basis of the C—O bond lengths, the carboxylate group appears to be delocalized. The O—C—O bond angles of the carboxylate and carboxy groups are almost equal (Table 1). In the crystal, the anions are connected by strong intermolecular O—H···O hydrogen bonds, forming one-dimensional chains along the b axis. The acridinium cations are linked to the anionic chains by strong intermolecular N—H···O hydrogen bonds between the carboxylate group of the anion and the NH group of the cation (Fig. 2 and Table 2). Along the b axis, successive chains stack in the opposite directions. Weak intermolecular C—H···O hydrogen bonds stabilize also the crystal structure (Table 2). Numerous intermolecular π-π interactions are also present between adjacent six-membered rings, the shortest centroid-centroid distance being 3.734 (1) Å.

Related literature top

For related crystal structures of acridinium compounds with carboxylate, see: Shaameri et al. (2001); Derikvand et al. (2009); Attar Gharamaleki et al. (2010).

Experimental top

To a solution of acridine (0.3584 g, 2.00 mmol) in EtOH (20 ml) was added pyridine-2,6-dicarboxylic acid (0.1671 g, 1.00 mmol) and refluxed for 3 h. The formed precipitate was separated by filtration, washed with ether and dried at 50 °C, to give a yellow powder (0.2281 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from a water solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. Nitrogen- and oxygen-bound H atoms were located from Fourier difference maps then allowed to ride on their parent atoms in the final cycles of refinement with N—H = 0.92 Å, O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(N, O). The highest peak (0.31 e Å-3) and the deepest hole (-0.27 e Å-3) in the difference Fourier map are located 0.68 Å and 1.11 Å from the atoms C6 and C15, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structure detail of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Acridin-10-ium 6-carboxypyridine-2-carboxylate top
Crystal data top
C13H10N+·C7H4NO4F(000) = 1440
Mr = 346.33Dx = 1.456 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3018 reflections
a = 16.6817 (8) Åθ = 2.5–27.8°
b = 8.2872 (4) ŵ = 0.10 mm1
c = 23.7289 (12) ÅT = 200 K
β = 105.582 (1)°Block, yellow
V = 3159.8 (3) Å30.29 × 0.18 × 0.17 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
3894 independent reflections
Radiation source: fine-focus sealed tube2198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2219
Tmin = 0.884, Tmax = 1.000k = 1011
11354 measured reflectionsl = 2931
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.8669P]
where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H10N+·C7H4NO4V = 3159.8 (3) Å3
Mr = 346.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.6817 (8) ŵ = 0.10 mm1
b = 8.2872 (4) ÅT = 200 K
c = 23.7289 (12) Å0.29 × 0.18 × 0.17 mm
β = 105.582 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3894 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2198 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 1.000Rint = 0.046
11354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
3894 reflectionsΔρmin = 0.27 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.04881 (10)0.2361 (2)0.00985 (7)0.0305 (4)
H1N0.10010.23380.03670.046*
C10.04063 (12)0.1529 (2)0.04054 (9)0.0300 (5)
C20.11101 (13)0.0861 (3)0.05417 (10)0.0369 (5)
H20.16480.09860.02800.044*
C30.10107 (14)0.0039 (3)0.10497 (10)0.0410 (6)
H30.14860.03970.11430.049*
C40.02137 (14)0.0185 (3)0.14456 (10)0.0408 (6)
H40.01610.07660.17990.049*
C50.04717 (14)0.0427 (3)0.13213 (9)0.0366 (5)
H50.10050.02580.15840.044*
C60.03965 (13)0.1322 (3)0.07986 (9)0.0308 (5)
C70.10755 (13)0.2029 (3)0.06581 (9)0.0338 (5)
H70.16170.18840.09120.041*
C80.09735 (12)0.2943 (3)0.01523 (9)0.0317 (5)
C90.16393 (14)0.3735 (3)0.00016 (10)0.0413 (6)
H90.21830.36900.02570.050*
C100.15110 (15)0.4556 (3)0.05128 (11)0.0446 (6)
H100.19650.50600.06130.054*
C110.07003 (14)0.4662 (3)0.08980 (10)0.0408 (6)
H110.06180.52430.12540.049*
C120.00364 (14)0.3949 (3)0.07683 (9)0.0344 (5)
H120.05040.40370.10290.041*
C130.01634 (12)0.3078 (2)0.02393 (9)0.0294 (5)
O10.24957 (9)0.82325 (18)0.32785 (7)0.0433 (4)
H1O0.25330.92410.33110.065*
O20.13288 (10)0.87006 (19)0.25747 (7)0.0475 (5)
O30.30738 (9)0.32253 (19)0.41697 (7)0.0431 (4)
O40.29134 (9)0.11156 (19)0.35743 (7)0.0462 (5)
N20.22360 (10)0.5100 (2)0.32603 (7)0.0295 (4)
C140.17072 (12)0.5985 (3)0.28554 (9)0.0295 (5)
C150.10598 (13)0.5332 (3)0.24202 (10)0.0369 (5)
H150.06860.60070.21480.044*
C160.09746 (14)0.3678 (3)0.23931 (10)0.0407 (6)
H160.05400.31920.20990.049*
C170.15273 (13)0.2735 (3)0.27968 (9)0.0346 (5)
H170.14890.15910.27790.041*
C180.21413 (12)0.3490 (2)0.32294 (9)0.0284 (5)
C190.18181 (13)0.7786 (3)0.28826 (9)0.0315 (5)
C200.27569 (12)0.2525 (3)0.36928 (10)0.0317 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0284 (9)0.0307 (10)0.0287 (10)0.0019 (8)0.0014 (8)0.0006 (8)
C10.0333 (11)0.0281 (12)0.0270 (11)0.0005 (9)0.0054 (9)0.0018 (9)
C20.0321 (12)0.0428 (14)0.0339 (13)0.0032 (10)0.0056 (10)0.0001 (11)
C30.0422 (13)0.0437 (15)0.0396 (14)0.0047 (11)0.0153 (11)0.0029 (11)
C40.0491 (14)0.0400 (14)0.0331 (13)0.0023 (11)0.0106 (11)0.0059 (10)
C50.0410 (13)0.0360 (13)0.0290 (12)0.0066 (10)0.0030 (10)0.0012 (10)
C60.0328 (11)0.0285 (12)0.0289 (12)0.0023 (9)0.0048 (9)0.0046 (9)
C70.0286 (11)0.0379 (13)0.0300 (12)0.0006 (10)0.0005 (9)0.0045 (10)
C80.0315 (11)0.0307 (12)0.0313 (12)0.0033 (9)0.0055 (9)0.0052 (10)
C90.0309 (12)0.0485 (15)0.0416 (14)0.0053 (11)0.0045 (10)0.0037 (12)
C100.0423 (14)0.0479 (16)0.0468 (15)0.0110 (12)0.0173 (11)0.0029 (12)
C110.0490 (14)0.0371 (14)0.0369 (14)0.0043 (11)0.0124 (11)0.0029 (11)
C120.0377 (12)0.0328 (13)0.0303 (12)0.0004 (10)0.0047 (10)0.0012 (10)
C130.0294 (11)0.0262 (12)0.0319 (12)0.0030 (9)0.0072 (9)0.0048 (9)
O10.0412 (9)0.0265 (9)0.0531 (11)0.0000 (7)0.0029 (8)0.0003 (7)
O20.0533 (10)0.0325 (9)0.0460 (10)0.0081 (8)0.0049 (8)0.0074 (8)
O30.0454 (9)0.0406 (10)0.0344 (9)0.0111 (8)0.0047 (7)0.0041 (8)
O40.0396 (9)0.0277 (9)0.0617 (12)0.0043 (7)0.0029 (8)0.0070 (8)
N20.0277 (9)0.0319 (10)0.0283 (10)0.0035 (8)0.0063 (7)0.0020 (8)
C140.0302 (11)0.0292 (12)0.0292 (12)0.0011 (9)0.0082 (9)0.0007 (9)
C150.0375 (12)0.0381 (14)0.0305 (12)0.0037 (10)0.0010 (10)0.0012 (10)
C160.0375 (12)0.0389 (14)0.0375 (14)0.0019 (11)0.0040 (10)0.0047 (11)
C170.0349 (12)0.0292 (12)0.0354 (13)0.0003 (10)0.0021 (10)0.0034 (10)
C180.0276 (10)0.0262 (12)0.0313 (12)0.0005 (9)0.0077 (9)0.0008 (9)
C190.0330 (11)0.0324 (12)0.0285 (12)0.0009 (10)0.0071 (9)0.0023 (10)
C200.0270 (11)0.0295 (13)0.0371 (13)0.0002 (9)0.0057 (10)0.0005 (10)
Geometric parameters (Å, º) top
N1—C11.355 (3)C10—H100.9500
N1—C131.357 (3)C11—C121.361 (3)
N1—H1N0.9200C11—H110.9500
C1—C21.412 (3)C12—C131.414 (3)
C1—C61.422 (3)C12—H120.9500
C2—C31.355 (3)O1—C191.314 (2)
C2—H20.9500O1—H1O0.8400
C3—C41.419 (3)O2—C191.206 (2)
C3—H30.9500O3—C201.255 (2)
C4—C51.354 (3)O4—C201.246 (3)
C4—H40.9500N2—C141.335 (3)
C5—C61.421 (3)N2—C181.344 (3)
C5—H50.9500C14—C151.388 (3)
C6—C71.393 (3)C14—C191.503 (3)
C7—C81.390 (3)C15—C161.378 (3)
C7—H70.9500C15—H150.9500
C8—C91.420 (3)C16—C171.380 (3)
C8—C131.424 (3)C16—H160.9500
C9—C101.357 (3)C17—C181.389 (3)
C9—H90.9500C17—H170.9500
C10—C111.417 (3)C18—C201.515 (3)
C1—N1—C13122.86 (17)C12—C11—C10121.4 (2)
C1—N1—H1N117.1C12—C11—H11119.3
C13—N1—H1N119.7C10—C11—H11119.3
N1—C1—C2120.59 (18)C11—C12—C13119.0 (2)
N1—C1—C6119.62 (19)C11—C12—H12120.5
C2—C1—C6119.8 (2)C13—C12—H12120.5
C3—C2—C1119.3 (2)N1—C13—C12120.22 (18)
C3—C2—H2120.3N1—C13—C8119.18 (19)
C1—C2—H2120.3C12—C13—C8120.60 (19)
C2—C3—C4121.6 (2)C19—O1—H1O112.0
C2—C3—H3119.2C14—N2—C18117.44 (18)
C4—C3—H3119.2N2—C14—C15123.6 (2)
C5—C4—C3120.2 (2)N2—C14—C19117.66 (19)
C5—C4—H4119.9C15—C14—C19118.77 (19)
C3—C4—H4119.9C16—C15—C14118.2 (2)
C4—C5—C6120.3 (2)C16—C15—H15120.9
C4—C5—H5119.9C14—C15—H15120.9
C6—C5—H5119.9C15—C16—C17119.3 (2)
C7—C6—C5122.78 (19)C15—C16—H16120.3
C7—C6—C1118.4 (2)C17—C16—H16120.3
C5—C6—C1118.8 (2)C16—C17—C18118.7 (2)
C8—C7—C6121.12 (19)C16—C17—H17120.6
C8—C7—H7119.4C18—C17—H17120.6
C6—C7—H7119.4N2—C18—C17122.70 (19)
C7—C8—C9123.4 (2)N2—C18—C20115.95 (18)
C7—C8—C13118.73 (19)C17—C18—C20121.34 (19)
C9—C8—C13117.8 (2)O2—C19—O1124.6 (2)
C10—C9—C8121.0 (2)O2—C19—C14122.9 (2)
C10—C9—H9119.5O1—C19—C14112.50 (18)
C8—C9—H9119.5O4—C20—O3125.0 (2)
C9—C10—C11120.1 (2)O4—C20—C18118.25 (19)
C9—C10—H10119.9O3—C20—C18116.73 (19)
C11—C10—H10119.9
C13—N1—C1—C2177.4 (2)C11—C12—C13—N1179.8 (2)
C13—N1—C1—C62.9 (3)C11—C12—C13—C80.1 (3)
N1—C1—C2—C3179.8 (2)C7—C8—C13—N12.3 (3)
C6—C1—C2—C30.5 (3)C9—C8—C13—N1178.68 (19)
C1—C2—C3—C40.8 (4)C7—C8—C13—C12177.8 (2)
C2—C3—C4—C50.0 (4)C9—C8—C13—C121.2 (3)
C3—C4—C5—C61.1 (4)C18—N2—C14—C151.8 (3)
C4—C5—C6—C7177.6 (2)C18—N2—C14—C19179.12 (18)
C4—C5—C6—C11.4 (3)N2—C14—C15—C162.2 (3)
N1—C1—C6—C71.8 (3)C19—C14—C15—C16178.8 (2)
C2—C1—C6—C7178.5 (2)C14—C15—C16—C170.3 (4)
N1—C1—C6—C5179.16 (19)C15—C16—C17—C181.7 (3)
C2—C1—C6—C50.6 (3)C14—N2—C18—C170.4 (3)
C5—C6—C7—C8177.7 (2)C14—N2—C18—C20179.50 (18)
C1—C6—C7—C81.2 (3)C16—C17—C18—N22.2 (3)
C6—C7—C8—C9177.8 (2)C16—C17—C18—C20178.8 (2)
C6—C7—C8—C133.2 (3)N2—C14—C19—O2172.6 (2)
C7—C8—C9—C10177.2 (2)C15—C14—C19—O26.5 (3)
C13—C8—C9—C101.8 (3)N2—C14—C19—O16.8 (3)
C8—C9—C10—C111.3 (4)C15—C14—C19—O1174.07 (19)
C9—C10—C11—C120.2 (4)N2—C18—C20—O4153.4 (2)
C10—C11—C12—C130.4 (3)C17—C18—C20—O425.7 (3)
C1—N1—C13—C12179.1 (2)N2—C18—C20—O326.3 (3)
C1—N1—C13—C80.8 (3)C17—C18—C20—O3154.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.921.702.602 (2)165
O1—H1O···O4ii0.841.732.535 (2)160
C7—H7···O1iii0.952.373.132 (2)137
C10—H10···O3iv0.952.493.435 (3)171
C12—H12···O4i0.952.563.466 (3)160
C17—H17···O2v0.952.443.387 (3)171
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H10N+·C7H4NO4
Mr346.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)16.6817 (8), 8.2872 (4), 23.7289 (12)
β (°) 105.582 (1)
V3)3159.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.884, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11354, 3894, 2198
Rint0.046
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.06
No. of reflections3894
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
O1—C191.314 (2)O3—C201.255 (2)
O2—C191.206 (2)O4—C201.246 (3)
O2—C19—O1124.6 (2)O4—C20—O3125.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.921.702.602 (2)165.2
O1—H1O···O4ii0.841.732.535 (2)159.7
C7—H7···O1iii0.952.373.132 (2)137.4
C10—H10···O3iv0.952.493.435 (3)171.3
C12—H12···O4i0.952.563.466 (3)160.4
C17—H17···O2v0.952.443.387 (3)171.4
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y1, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationAttar Gharamaleki, J., Derikvand, Z. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, o2231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationShaameri, Z., Shan, N. & Jones, W. (2001). Acta Cryst. E57, o945–o946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds