supplementary materials


tk5029 scheme

Acta Cryst. (2012). E68, o26    [ doi:10.1107/S1600536811051464 ]

N-(4-Bromophenyl)-3,5-dinitrobenzamide

S. Saeed, N. Rashid, R. Hussain and W.-T. Wong

Abstract top

The title molecule, C13H8BrN3O5, is slightly twisted, with the dihedral angle between the two benzene rings being 5.9 (1)°. In the crystal, N-H...O hydrogen bonds link the molecules into one-dimensional chains running along [101]. Further stabilization of the crystal structure is provided by [pi]-[pi] interactions [shortest centroid-centroid distance = 3.6467 (17) Å].

Comment top

In connection with on-going studies into N-substituted benzamides (Saeed et al., 2011a,b), we recently determined the crystal structure of 3,5-dinitro-N-(1,3-thiazol-2-yl)-benzamide monohydrate (Saeed et al., 2011a). In this paper we present the crystal structure of the title compound (I), Fig. 1.

Intermolecular N1—H1N···O1 hydrogen bonds link the molecules into 1-D chains running along [101], Table 1 and Fig. 2. The dihedral angle between the two phenyl ring planes is 5.9 (1)°. Both nitro groups are slightly twisted, 3.3 (2)° and 4.6 (2)°, respectively, from the benzene ring plane, C2—C7. There are also weak ππ interactions between neighbouring molecules, Table 2.

Related literature top

For background to the biological activity of N-substituted benzamides, their use in synthesis and for related structures, see: Saeed et al. (2011a,b).

Experimental top

To a 250 ml round flask fitted with a condenser was added ethyl 4-bromoaniline (0.1 mol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. 3,5-Dinitrobenzoyl chloride (0.1 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as a colourless powder, which was washed three times with water and dichloromethane. Recrystallization from ethyl acetate produced the crystals of the title compound.

Refinement top

All of the C-bound H atoms are observable in a difference Fourier map but were placed at geometrical positions with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(Carrier). The N-bound H-atoms were located from difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing at the 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The packing diagram projected down the a axis of the compound showing 50% probability displacement ellipsoids. The cyan dotted lines indicate N—H···O hydrogen bonding interactions.
N-(4-Bromophenyl)-3,5-dinitrobenzamide top
Crystal data top
C13H8BrN3O5F(000) = 728
Mr = 366.13Dx = 1.732 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 18250 reflections
a = 7.1273 (2) Åθ = 2.9–25.0°
b = 26.6676 (7) ŵ = 2.96 mm1
c = 7.5428 (2) ÅT = 296 K
β = 101.652 (2)°Block, colourless
V = 1404.10 (7) Å30.56 × 0.34 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2476 independent reflections
Radiation source: fine-focus sealed tube2007 reflections with I > 2σ(I)
graphiteRint = 0.060
ω and φ scanθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.288, Tmax = 0.471k = 3131
18250 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.9282P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2476 reflectionsΔρmax = 0.25 e Å3
204 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (12)
Crystal data top
C13H8BrN3O5V = 1404.10 (7) Å3
Mr = 366.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1273 (2) ŵ = 2.96 mm1
b = 26.6676 (7) ÅT = 296 K
c = 7.5428 (2) Å0.56 × 0.34 × 0.30 mm
β = 101.652 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2476 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2007 reflections with I > 2σ(I)
Tmin = 0.288, Tmax = 0.471Rint = 0.060
18250 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.25 e Å3
S = 1.10Δρmin = 0.46 e Å3
2476 reflectionsAbsolute structure: ?
204 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.80856 (6)0.046874 (16)0.25109 (7)0.0884 (2)
O10.6333 (3)0.28369 (8)0.5032 (3)0.0569 (6)
O20.9867 (5)0.31665 (12)1.3107 (3)0.0879 (9)
O30.9761 (6)0.39563 (13)1.3387 (4)0.1162 (14)
O40.8205 (5)0.50043 (9)0.8040 (5)0.0986 (10)
O50.7279 (6)0.46522 (10)0.5447 (5)0.0967 (11)
N10.8777 (3)0.24105 (8)0.6787 (3)0.0395 (6)
N20.9563 (5)0.35817 (13)1.2475 (4)0.0651 (9)
N30.7853 (5)0.46389 (11)0.7070 (6)0.0655 (9)
C10.7638 (4)0.28096 (10)0.6368 (4)0.0393 (6)
C20.8027 (3)0.32503 (10)0.7622 (4)0.0341 (6)
C30.8632 (4)0.32045 (10)0.9473 (4)0.0362 (6)
H30.88340.28901.00130.043*
C40.8932 (4)0.36369 (11)1.0508 (4)0.0430 (7)
C50.8704 (4)0.41094 (11)0.9800 (4)0.0487 (8)
H50.89340.43941.05240.058*
C60.8110 (4)0.41394 (10)0.7935 (5)0.0456 (7)
C70.7736 (4)0.37237 (10)0.6849 (4)0.0405 (6)
H70.72930.37590.56080.049*
C80.8647 (4)0.19583 (10)0.5760 (4)0.0392 (6)
C90.8261 (4)0.19669 (12)0.3885 (4)0.0488 (7)
H90.81070.22710.32680.059*
C100.8108 (5)0.15204 (15)0.2943 (5)0.0580 (9)
H100.78280.15220.16850.070*
C110.8370 (4)0.10718 (13)0.3874 (5)0.0576 (9)
C120.8826 (5)0.10586 (12)0.5729 (5)0.0561 (8)
H120.90450.07540.63380.067*
C130.8955 (4)0.15065 (11)0.6683 (4)0.0481 (8)
H130.92470.15040.79420.058*
H1N0.958 (4)0.2412 (10)0.792 (4)0.035 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0662 (3)0.0737 (3)0.1252 (5)0.01117 (19)0.0187 (3)0.0669 (3)
O10.0609 (13)0.0435 (11)0.0499 (13)0.0067 (10)0.0278 (11)0.0061 (10)
O20.134 (3)0.084 (2)0.0409 (14)0.0258 (18)0.0057 (15)0.0037 (14)
O30.205 (4)0.095 (2)0.0539 (16)0.049 (2)0.038 (2)0.0396 (17)
O40.105 (2)0.0269 (13)0.161 (3)0.0038 (13)0.020 (2)0.0076 (16)
O50.133 (3)0.0518 (16)0.104 (3)0.0173 (17)0.022 (2)0.0374 (16)
N10.0429 (13)0.0309 (12)0.0361 (13)0.0010 (10)0.0123 (11)0.0037 (10)
N20.089 (2)0.070 (2)0.0407 (16)0.0319 (17)0.0224 (15)0.0123 (15)
N30.0619 (19)0.0326 (15)0.104 (3)0.0066 (13)0.0229 (18)0.0138 (16)
C10.0383 (15)0.0335 (14)0.0394 (15)0.0015 (11)0.0079 (12)0.0023 (12)
C20.0309 (14)0.0294 (13)0.0381 (15)0.0005 (10)0.0024 (11)0.0013 (11)
C30.0344 (14)0.0323 (13)0.0394 (15)0.0027 (11)0.0016 (11)0.0020 (11)
C40.0448 (16)0.0465 (16)0.0389 (16)0.0090 (13)0.0116 (13)0.0087 (13)
C50.0530 (18)0.0356 (15)0.060 (2)0.0102 (13)0.0159 (15)0.0130 (14)
C60.0410 (16)0.0261 (14)0.071 (2)0.0006 (11)0.0144 (15)0.0024 (13)
C70.0370 (15)0.0359 (15)0.0447 (16)0.0038 (12)0.0012 (12)0.0058 (13)
C80.0331 (14)0.0350 (14)0.0440 (16)0.0016 (11)0.0051 (11)0.0108 (12)
C90.0471 (17)0.0522 (18)0.0446 (18)0.0024 (14)0.0035 (13)0.0088 (14)
C100.0495 (19)0.075 (2)0.0485 (19)0.0023 (16)0.0085 (15)0.0248 (18)
C110.0373 (17)0.057 (2)0.077 (2)0.0065 (14)0.0087 (16)0.0346 (18)
C120.0495 (19)0.0402 (16)0.075 (2)0.0007 (14)0.0032 (16)0.0147 (16)
C130.0492 (17)0.0358 (15)0.0517 (18)0.0011 (13)0.0077 (14)0.0076 (13)
Geometric parameters (Å, °) top
Br1—C111.898 (3)C4—C51.366 (4)
O1—C11.228 (3)C5—C61.387 (5)
O2—N21.208 (4)C5—H50.9300
O3—N21.205 (4)C6—C71.372 (4)
O4—N31.214 (4)C7—H70.9300
O5—N31.211 (5)C8—C91.385 (4)
N1—C11.337 (4)C8—C131.387 (4)
N1—C81.426 (3)C9—C101.380 (5)
N1—H1N0.93 (3)C9—H90.9300
N2—C41.468 (4)C10—C111.381 (5)
N3—C61.478 (4)C10—H100.9300
C1—C21.499 (4)C11—C121.371 (5)
C2—C31.381 (4)C12—C131.388 (4)
C2—C71.388 (4)C12—H120.9300
C3—C41.385 (4)C13—H130.9300
C3—H30.9300
C1—N1—C8125.1 (2)C7—C6—C5122.8 (3)
C1—N1—H1N116.5 (17)C7—C6—N3118.2 (3)
C8—N1—H1N117.7 (17)C5—C6—N3119.0 (3)
O3—N2—O2123.0 (3)C6—C7—C2119.3 (3)
O3—N2—C4118.1 (3)C6—C7—H7120.3
O2—N2—C4119.0 (3)C2—C7—H7120.3
O5—N3—O4124.9 (3)C9—C8—C13120.4 (3)
O5—N3—C6117.3 (3)C9—C8—N1121.2 (3)
O4—N3—C6117.7 (4)C13—C8—N1118.4 (3)
O1—C1—N1124.4 (3)C10—C9—C8119.4 (3)
O1—C1—C2118.9 (2)C10—C9—H9120.3
N1—C1—C2116.7 (2)C8—C9—H9120.3
C3—C2—C7119.6 (2)C9—C10—C11119.8 (3)
C3—C2—C1123.3 (2)C9—C10—H10120.1
C7—C2—C1117.1 (2)C11—C10—H10120.1
C2—C3—C4118.5 (2)C12—C11—C10121.4 (3)
C2—C3—H3120.7C12—C11—Br1120.6 (3)
C4—C3—H3120.7C10—C11—Br1118.0 (3)
C5—C4—C3123.7 (3)C11—C12—C13118.9 (3)
C5—C4—N2118.4 (3)C11—C12—H12120.5
C3—C4—N2117.8 (3)C13—C12—H12120.5
C4—C5—C6116.0 (3)C8—C13—C12120.0 (3)
C4—C5—H5122.0C8—C13—H13120.0
C6—C5—H5122.0C12—C13—H13120.0
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.93 (3)1.93 (3)2.818 (3)159 (3)
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.93 (3)1.93 (3)2.818 (3)159 (3)
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.
Table 2
Table 2. ππ interactions (Å, °)
Cg1 and Cg2 are centroids of the rings C2-C7 and C8-C13 respectively, CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgJ_Perp is the perpendicular distance of CgJ from ring I.
top
IJCgI···CgJDihedral angleCgI_PerpCgJ_Perp
12i3.7391 (17)6.24 (14)3.5945 (11)-3.6827 (13)
12ii3.6467 (17)6.24 (14)-3.5254 (12)3.4038 (13)
symmetry operators: i: -1/2+x, 1/2-y, 1/2+z ii: 1/2+x, 1/2-y, 1/2+z
Acknowledgements top

Dr Wesley T.-K. Chan, Professor Z.-Y. Zhou and the Hong Kong Polytechnic University are sincerely thanked for helping to collect the X-ray data.

references
References top

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, o279.

Saeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1194.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.