supplementary materials


tk5031 scheme

Acta Cryst. (2012). E68, o74-o75    [ doi:10.1107/S1600536811052548 ]

(1E,4E)-1-(3-Nitrophenyl)-5-phenylpenta-1,4-dien-3-one

S. Samshuddin, R. J. Butcher, M. Akkurt, B. Narayana, B. K. Sarojini and H. S. Yathirajan

Abstract top

In the title compound, C17H13NO3, the dihedral angle between the benzene rings is 31.21 (5)°. In the crystal, inversion dimers linked by pairs of C-H...O hydrogen bonds occur. A C-H...[pi] interaction is also indicated.

Comment top

Chalcones are highly reactive substances of varied nature. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is useful for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine, 2,4,6-triaryl pyridine, isoxazoline and cyclohexenone derivatives (Samshuddin et al., 2011a,b,c; Fun et al., 2010; Jasinski et al., 2010; Baktır et al., 2011).

The crystal structures of some bis-chalcones viz., 2,6-bis(4-methoxybenzylidene)cyclohexanone (Butcher et al., 2006a), 1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (Butcher et al., 2006b), 1,5-bis(3,4-dimethoxyphenyl)penta-1,4-dien-3-one (Butcher et al., 2007a), 1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one (Butcher et al., 2007b), 2,5-bis(3,4-dimethoxybenzylidene)cyclopentanone (Butcher et al., 2007c), 1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one (Harrison et al., 2006), 2,4-dimethyl-1,5-diphenylpenta-1,4-dien-3-one (Hu et al., 2004) have been reported. In continuation of our work on synthesis of chalcone derivatives, the title compound (I) was prepared and its crystal structure is reported.

In the title molecule (I), (Fig. 1), bond lengths and angles are comparable to closely related structures (Patil et al., 2007; Zhao et al., 2007; Fischer et al., 2007; Butcher et al. (2006a,b, 2007a,b,c); Harrison et al. (2006); Hu et al. (2004). The least-squares plane through the C7–C11/O3 group makes dihedral angles of 8.22 (6) and 32.14 (6)° with the C1–C6 benzene ring and the C12–C17 phenyl ring, respectively. The dihedral angle between these rings is 31.21 (5)° and the nitro group at C3 lies close to the C1–C6 ring plane, with O1–N1–C3–C2 and O2–N1–C3–C4 torsion angles of 6.3 (3) and 7.4 (3)°, respectively.

The molecular packing of (I) shown in Fig. 2 is stabilized by C—H···O interactions (Table 1), which lead to the formation of a centrosymmetric dimer, and is further consolidated by C—H···π interactions (Table 1) involving the C12–C17 phenyl ring.

Related literature top

For the pharmacological importance of chalcones and bis chalcones, see: Sarojini et al. (2006); Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004). For our work on synthesis of different derivatives of chalcones, see: Baktır et al. (2011); Fun et al. (2010); Jasinski et al. (2010); Samshuddin et al. (2011a,b,c). For related structures, see: Butcher et al. (2006a,b; 2007a,b,c); Harrison et al. (2006); Hu et al. (2004); Fischer et al. (2007); Patil et al. (2007); Zhao et al. (2007).

Experimental top

Synthesis of title compound was carried out by stirring a mixture of benzylidene acetone (1.46 g, 0.01 mol) and 3-nitrobenzaldehyde (1.51 g, 0.01 mol) in 40 ml of ethanolic sodium hydroxide at 278–283 K for 3 h. The precipitate was collected by filtration and purified by recrystallization from ethanol. The single crystal was grown from 1,4-dioxane by the slow evaporation method and yield of the compound was 80%. (M.pt. 414 K).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(1E,4E)-1-(3-Nitrophenyl)-5-phenylpenta-1,4-dien-3-one top
Crystal data top
C17H13NO3F(000) = 584
Mr = 279.28Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2209 reflections
a = 11.9806 (6) Åθ = 3.1–30.9°
b = 9.8955 (4) ŵ = 0.10 mm1
c = 12.5562 (7) ÅT = 293 K
β = 114.992 (7)°Plate, colourless
V = 1349.21 (14) Å30.44 × 0.34 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3746 independent reflections
Radiation source: Enhance (Mo) X-ray Source2453 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 10.5081 pixels mm-1θmax = 30.9°, θmin = 3.3°
ω scansh = 1715
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1314
Tmin = 0.969, Tmax = 1.000l = 1118
7835 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.047P)2 + 0.2703P]
where P = (Fo2 + 2Fc2)/3
3746 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H13NO3V = 1349.21 (14) Å3
Mr = 279.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9806 (6) ŵ = 0.10 mm1
b = 9.8955 (4) ÅT = 293 K
c = 12.5562 (7) Å0.44 × 0.34 × 0.08 mm
β = 114.992 (7)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3746 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2453 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 1.000Rint = 0.033
7835 measured reflectionsθmax = 30.9°
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.25 e Å3
S = 1.02Δρmin = 0.26 e Å3
3746 reflectionsAbsolute structure: ?
190 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17385 (11)0.14120 (12)0.04941 (10)0.0346 (4)
O20.11627 (15)0.33639 (14)0.03094 (11)0.0526 (5)
O30.54296 (11)0.04578 (11)0.67363 (10)0.0288 (4)
N10.16833 (13)0.26465 (15)0.05501 (12)0.0291 (4)
C10.34756 (14)0.30928 (16)0.37830 (13)0.0208 (4)
C20.29603 (14)0.25023 (16)0.26714 (13)0.0211 (4)
C30.22682 (14)0.32911 (16)0.17068 (13)0.0226 (5)
C40.20852 (15)0.46592 (17)0.17935 (14)0.0248 (5)
C50.26174 (15)0.52505 (17)0.28955 (14)0.0247 (5)
C60.32965 (15)0.44777 (16)0.38746 (14)0.0242 (5)
C70.41680 (14)0.22370 (16)0.48051 (14)0.0225 (5)
C80.46170 (14)0.26055 (16)0.59296 (14)0.0227 (5)
C90.53494 (14)0.16722 (16)0.68958 (14)0.0225 (5)
C100.60212 (14)0.23207 (16)0.80546 (13)0.0221 (5)
C110.70265 (14)0.17661 (16)0.88844 (13)0.0226 (5)
C120.78098 (14)0.23472 (16)1.00356 (13)0.0211 (4)
C130.74719 (15)0.34930 (17)1.04775 (14)0.0256 (5)
C140.82268 (16)0.39866 (17)1.15834 (15)0.0296 (5)
C150.93264 (16)0.33433 (18)1.22672 (15)0.0307 (5)
C160.96719 (15)0.22128 (18)1.18395 (15)0.0288 (5)
C170.89256 (15)0.17173 (17)1.07295 (14)0.0258 (5)
H2A0.308000.158900.257900.0250*
H4A0.161800.516700.113100.0300*
H5A0.251800.617100.297800.0300*
H6A0.364200.488700.461000.0290*
H7A0.430700.134800.465300.0270*
H8A0.446600.347700.611400.0270*
H10A0.573500.313800.820900.0260*
H11A0.725500.092300.871600.0270*
H13A0.673400.392901.002700.0310*
H14A0.799400.475301.186800.0360*
H15A0.982800.367301.301100.0370*
H16A1.040900.177901.229700.0350*
H17A0.917100.095901.044600.0310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0408 (8)0.0265 (6)0.0284 (7)0.0001 (6)0.0068 (6)0.0062 (6)
O20.0800 (11)0.0377 (8)0.0184 (7)0.0015 (8)0.0003 (7)0.0065 (6)
O30.0347 (7)0.0216 (6)0.0241 (6)0.0027 (5)0.0066 (5)0.0001 (5)
N10.0322 (8)0.0298 (8)0.0206 (7)0.0031 (7)0.0066 (6)0.0004 (7)
C10.0195 (7)0.0224 (8)0.0202 (8)0.0009 (6)0.0082 (7)0.0004 (7)
C20.0216 (7)0.0183 (7)0.0243 (8)0.0010 (6)0.0107 (7)0.0001 (7)
C30.0240 (8)0.0249 (8)0.0171 (8)0.0039 (7)0.0070 (7)0.0009 (7)
C40.0270 (8)0.0251 (8)0.0211 (8)0.0029 (7)0.0091 (7)0.0067 (7)
C50.0307 (9)0.0199 (8)0.0270 (9)0.0024 (7)0.0156 (7)0.0023 (7)
C60.0278 (8)0.0259 (8)0.0199 (8)0.0011 (7)0.0112 (7)0.0032 (7)
C70.0216 (8)0.0207 (8)0.0226 (8)0.0013 (7)0.0068 (7)0.0001 (7)
C80.0228 (8)0.0211 (8)0.0230 (8)0.0016 (7)0.0085 (7)0.0001 (7)
C90.0204 (8)0.0240 (8)0.0222 (8)0.0003 (7)0.0081 (7)0.0012 (7)
C100.0253 (8)0.0207 (8)0.0192 (8)0.0012 (7)0.0084 (7)0.0014 (7)
C110.0268 (8)0.0206 (8)0.0215 (8)0.0006 (7)0.0112 (7)0.0010 (7)
C120.0223 (8)0.0227 (8)0.0177 (7)0.0028 (7)0.0079 (7)0.0029 (7)
C130.0239 (8)0.0259 (8)0.0238 (8)0.0001 (7)0.0071 (7)0.0027 (7)
C140.0334 (9)0.0262 (9)0.0274 (9)0.0039 (8)0.0111 (8)0.0043 (8)
C150.0310 (9)0.0338 (10)0.0223 (9)0.0092 (8)0.0064 (8)0.0038 (8)
C160.0209 (8)0.0352 (10)0.0253 (9)0.0005 (7)0.0050 (7)0.0049 (8)
C170.0251 (8)0.0264 (8)0.0255 (8)0.0006 (7)0.0104 (7)0.0010 (7)
Geometric parameters (Å, °) top
O1—N11.2270 (19)C13—C141.387 (2)
O2—N11.2202 (19)C14—C151.386 (3)
O3—C91.2287 (19)C15—C161.378 (3)
N1—C31.465 (2)C16—C171.389 (2)
C1—C21.394 (2)C2—H2A0.9300
C1—C61.399 (2)C4—H4A0.9300
C1—C71.467 (2)C5—H5A0.9300
C2—C31.384 (2)C6—H6A0.9300
C3—C41.383 (2)C7—H7A0.9300
C4—C51.385 (2)C8—H8A0.9300
C5—C61.383 (2)C10—H10A0.9300
C7—C81.332 (2)C11—H11A0.9300
C8—C91.482 (2)C13—H13A0.9300
C9—C101.479 (2)C14—H14A0.9300
C10—C111.333 (2)C15—H15A0.9300
C11—C121.468 (2)C16—H16A0.9300
C12—C131.395 (2)C17—H17A0.9300
C12—C171.397 (2)
O1—N1—O2123.25 (14)C12—C17—C16120.61 (16)
O1—N1—C3118.38 (13)C1—C2—H2A120.00
O2—N1—C3118.36 (14)C3—C2—H2A120.00
C2—C1—C6118.32 (14)C3—C4—H4A121.00
C2—C1—C7118.78 (14)C5—C4—H4A121.00
C6—C1—C7122.89 (14)C4—C5—H5A120.00
C1—C2—C3119.22 (15)C6—C5—H5A120.00
N1—C3—C2118.73 (14)C1—C6—H6A119.00
N1—C3—C4118.61 (14)C5—C6—H6A119.00
C2—C3—C4122.65 (14)C1—C7—H7A117.00
C3—C4—C5118.09 (15)C8—C7—H7A117.00
C4—C5—C6120.27 (15)C7—C8—H8A119.00
C1—C6—C5121.43 (15)C9—C8—H8A119.00
C1—C7—C8126.52 (15)C9—C10—H10A119.00
C7—C8—C9122.11 (15)C11—C10—H10A119.00
O3—C9—C8122.43 (14)C10—C11—H11A117.00
O3—C9—C10122.50 (15)C12—C11—H11A117.00
C8—C9—C10115.02 (14)C12—C13—H13A120.00
C9—C10—C11121.79 (15)C14—C13—H13A120.00
C10—C11—C12126.80 (15)C13—C14—H14A120.00
C11—C12—C13122.53 (15)C15—C14—H14A120.00
C11—C12—C17118.99 (15)C14—C15—H15A120.00
C13—C12—C17118.46 (14)C16—C15—H15A120.00
C12—C13—C14120.55 (16)C15—C16—H16A120.00
C13—C14—C15120.36 (16)C17—C16—H16A120.00
C14—C15—C16119.65 (16)C12—C17—H17A120.00
C15—C16—C17120.37 (17)C16—C17—H17A120.00
O1—N1—C3—C26.3 (3)C1—C7—C8—C9177.47 (17)
O1—N1—C3—C4172.40 (17)C7—C8—C9—O311.3 (3)
O2—N1—C3—C2173.88 (18)C7—C8—C9—C10166.11 (17)
O2—N1—C3—C47.4 (3)O3—C9—C10—C1121.9 (3)
C6—C1—C2—C31.6 (3)C8—C9—C10—C11155.48 (17)
C7—C1—C2—C3177.69 (17)C9—C10—C11—C12176.13 (16)
C2—C1—C6—C50.6 (3)C10—C11—C12—C1310.4 (3)
C7—C1—C6—C5178.66 (18)C10—C11—C12—C17170.91 (18)
C2—C1—C7—C8173.22 (18)C11—C12—C13—C14178.32 (17)
C6—C1—C7—C86.1 (3)C17—C12—C13—C140.3 (3)
C1—C2—C3—N1177.19 (16)C11—C12—C17—C16177.90 (16)
C1—C2—C3—C41.5 (3)C13—C12—C17—C160.8 (3)
N1—C3—C4—C5178.43 (17)C12—C13—C14—C150.3 (3)
C2—C3—C4—C50.2 (3)C13—C14—C15—C160.4 (3)
C3—C4—C5—C60.8 (3)C14—C15—C16—C170.0 (3)
C4—C5—C6—C10.6 (3)C15—C16—C17—C120.7 (3)
Hydrogen-bond geometry (Å, °) top
Cg1 is the centroid of the C12–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.932.593.412 (2)147
C7—H7A···O30.932.542.858 (2)100
C11—H11A···O30.932.572.8724 (19)100
C5—H5A···Cg1ii0.932.623.3915 (19)141
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y+1/2, −z+3/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1 is the centroid of the C12–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.932.593.412 (2)147
C5—H5A···Cg1ii0.932.623.3915 (19)141
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y+1/2, −z+3/2.
Acknowledgements top

BN thanks the UGC for financial assistance through SAP and BSR one-time grants for the purchase of chemicals. HSY thanks the University of Mysore for research facilities. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

references
References top

Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.

Butcher, R. J., Jasinski, J. P., Narayana, B., Sarojini, B. K., Bindya, S. & Yathirajan, H. S. (2007c). Acta Cryst. E63, o3270–o3271.

Butcher, R. J., Jasinski, J. P., Sarojini, B. K., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007b). Acta Cryst. E63, o3213–o3214.

Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o3115.

Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006a). Acta Cryst. E62, o1910–o1912.

Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006b). Acta Cryst. E62, o1973–o1975.

Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.

Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Fischer, A., Yathirajan, H. S., Sarojini, B. K., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o2832.

Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.

Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523.

Hu, X.-R., Gu, J.-M. & Xu, W.-M. (2004). Acta Cryst. E60, o1437–o1438.

Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.

Nardelli, M. (1983). Comput. Chem. 7, 95–98.

Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122–o2123.

Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011c). Acta Cryst. E67, o1954–o1955.

Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2011a). Med Chem Res. doi:10.1007/s00044-011-9735-9.

Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011b). Der Pharm. Chem. 3, 232-240.

Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.

Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–887.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Zhao, B., Rong, Y.-Z. & Huang, W. (2007). Acta Cryst. E63, o2971.