supplementary materials


tk5032 scheme

Acta Cryst. (2012). E68, o76-o77    [ doi:10.1107/S160053681105255X ]

(2E)-2-[(3E)-4-Phenylbut-3-en-2-ylidene]hydrazinecarboxamide

S. Samshuddin, R. J. Butcher, S. O. Yildirim, M. Akkurt, B. Narayana and H. S. Yathirajan

Abstract top

In the title compound, C11H13N3O, the phenyl ring is disordered over two sites, with occupancy factors in a 0.520 (17):0.480 (17) ratio. The dihedral angle between the ring planes of the major and minor components of the disordered ring is 12.9 (2)°. In the crystal, molecules are linked by N-H...O hydrogen bonds, forming R22(8) ring motifs. C-H...O, C-H...N and C-H...[pi] interactions also occur.

Comment top

Semicarbazones presents a wide range of biological applications such as antitumoral, anticonvulsant, anti-trypanosomal, herbicidal and biocidal activities (Beraldo & Gambino, 2004; Beraldo et al., 2002; Teixeira et al., 2003). They can also be used as important intermediates in organic synthesis, mainly for obtaining heterocycle rings, such as thiazolidones, oxadiazoles, pyrazolidones, and thiadiazoles (Du et al., 2004; Kucukguzel et al., 2006)

Crystal structures of some semicarbazone derivatives, viz., acetone semicarbazone and benzaldehyde semicarbazone (Naik & Palenik, 1974); 3,4- methylenedioxybenzaldehyde semicarbazone (Wang et al.,2004); 4-(methylsulfanyl)benzaldehyde thiosemicarbazone (Yathirajan et al., 2006) and 4-(Methylsulfanyl)benzaldehyde semicarbazone (Sarojini et al., 2007) have been reported. In view of the importance of semicarbazones, the title compound (I) was prepared and its crystal structure is reported.

Fig. 1 shows the molecular structure of the title compound (I) with the disordered phenyl ring. The dihedral angle between the major and minor disorder components of the phenyl ring is 12.9 (2)°. The C7—C8—C9—C10, C7—C8—C9—N1, C10—C9—N1—N2, C8—C9—N1—N2, N1—N2—C11—N3 and N1—N2—C11—O1 torsion angles are -2.7 (2), 178.13 (13), -1.37 (19), 179.53 (10), -1.40 (17) and 179.22 (11)°, respectively, and indicate planarity in the molecule.

In the crystal, the molecules form centrosymmetric dimers with an R22(8) ring motif through a pair of N—H···O hydrogen bonds. These dimers are further connected into a three-dimensional network by intermolecular C—H···O and C—H···N hydrogen bonds (Table 1, Fig. 2). Weak intermolecular C—H···π interactions further stabilize the crystal structure.

Related literature top

For background to the biological activity of semicarbazones, see: Beraldo et al. (2002); Teixeira et al. (2003); Du et al. (2004); Kucukguzel et al. (2006); Beraldo & Gambino (2004). For related structures, see: Naik & Palenik (1974); Wang et al. (2004); Yathirajan et al. (2006); Sarojini et al. (2007).

Experimental top

To a mixture of a benzylidene acetone (1.46 g, 0.01 mol) and semicarbazide hydrochloride (1.12 g, 0.01 mol) in 50 ml ethanol was added a sodium acetate solution (2 g in 5 ml water) which was then refluxed for 4 h. The resultant solution was concentrated to half of its volume and poured into 50 ml ice-cold water. The precipitate thus formed was collected by filtration and purified by recrystallization from ethanol. The single crystal was grown from its absolute alcohol solution by slow evaporation. The yield was 74%. (M.pt. 455–459 K).

Refinement top

The phenyl ring is disordered over two positions with refined site occupancies of 0.520 (17) and 0.480 (17). All H atoms were placed in idealised positions and refined in the riding model approximation [N—H = 0.88 Å, aromatic C—H = 0.95 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(parent atom)]. In the crystal structure, there is an 206 Å3 void, but the low electron density (0.26 e.Å-3) in the difference Fourier map suggests no solvent molecule occupying this void.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The disordered molecule (I) showing the atom labeling scheme. Atoms of the minor disorder components are joined with dashed lines. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the N—H···O mediated dimers in (I) and their connections to other molecules by C—H···O and C—H···O hydrogen bonding.
(2E)-2-[(3E)-4-Phenylbut-3-en-2-ylidene]hydrazinecarboxamide top
Crystal data top
C11H13N3OF(000) = 864
Mr = 203.24Dx = 1.105 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5469 reflections
a = 15.1094 (8) Åθ = 3.0–30.9°
b = 24.4445 (11) ŵ = 0.07 mm1
c = 7.0368 (4) ÅT = 123 K
β = 109.908 (6)°Prism, colourless
V = 2443.7 (2) Å30.40 × 0.30 × 0.18 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3528 independent reflections
Radiation source: Enhance (Mo) X-ray Source2748 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 10.5081 pixels mm-1θmax = 30.9°, θmin = 3.0°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 3426
Tmin = 0.987, Tmax = 1.000l = 79
12712 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0981P)2 + 0.6768P]
where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H13N3OV = 2443.7 (2) Å3
Mr = 203.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.1094 (8) ŵ = 0.07 mm1
b = 24.4445 (11) ÅT = 123 K
c = 7.0368 (4) Å0.40 × 0.30 × 0.18 mm
β = 109.908 (6)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3528 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2748 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 1.000Rint = 0.026
12712 measured reflectionsθmax = 30.9°
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.176Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.22 e Å3
3528 reflectionsAbsolute structure: ?
168 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.36888 (6)0.23438 (4)1.62948 (12)0.0323 (3)
N10.34428 (7)0.30220 (5)1.17621 (15)0.0337 (3)
N20.31934 (7)0.27704 (4)1.32596 (14)0.0310 (3)
N30.47771 (7)0.26174 (6)1.49376 (16)0.0458 (4)
C1B0.3063 (5)0.40506 (19)0.5724 (7)0.0301 (9)0.520 (17)
C2B0.2428 (5)0.4316 (2)0.4074 (6)0.0354 (10)0.520 (17)
C3B0.2747 (6)0.45824 (19)0.2685 (6)0.0405 (13)0.520 (17)
C4B0.3701 (6)0.45829 (14)0.2947 (8)0.0409 (13)0.520 (17)
C5B0.4336 (6)0.4317 (2)0.4598 (11)0.0469 (14)0.520 (17)
C6B0.4017 (5)0.4051 (2)0.5986 (11)0.0434 (11)0.520 (17)
C70.25908 (11)0.37670 (5)0.71144 (19)0.0393 (4)
C80.31231 (10)0.35103 (5)0.87866 (19)0.0375 (4)
C90.27918 (9)0.32596 (5)1.03065 (18)0.0327 (3)
C100.17796 (10)0.32953 (6)1.0129 (2)0.0395 (4)
C110.38883 (8)0.25686 (5)1.49014 (17)0.0304 (3)
C3A0.2443 (5)0.4630 (2)0.2639 (7)0.0458 (13)0.480 (17)
C4A0.3345 (6)0.45553 (15)0.2576 (7)0.0378 (13)0.480 (17)
C5A0.3972 (6)0.4208 (2)0.3956 (10)0.0408 (14)0.480 (17)
C6A0.3697 (5)0.39363 (19)0.5398 (9)0.0337 (11)0.480 (17)
C2A0.2169 (4)0.4358 (2)0.4081 (7)0.0402 (11)0.480 (17)
C1A0.2795 (4)0.40110 (19)0.5461 (6)0.0276 (10)0.480 (17)
H7A0.194700.379300.699800.0470*
H3BA0.231300.476400.155700.0490*0.520 (17)
H5BA0.498900.431800.477700.0560*0.520 (17)
H6BA0.445100.387000.711500.0520*0.520 (17)
H10A0.173300.333601.147700.0590*
H10B0.145200.296100.949400.0590*
H10C0.148900.361200.929800.0590*
H4BA0.392000.476500.199800.0490*0.520 (17)
H8A0.377900.348900.901000.0450*
H2B0.259800.274101.315700.0370*
H3B0.524400.248901.596900.0550*
H3C0.489400.277801.393000.0550*
H2BA0.177600.431600.389500.0420*0.520 (17)
H2AA0.155200.440900.412400.0480*0.480 (17)
H3AA0.201500.486700.169600.0550*0.480 (17)
H4AA0.353300.474100.159100.0450*0.480 (17)
H5AA0.458800.415700.391300.0490*0.480 (17)
H6AA0.412500.369900.634100.0400*0.480 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0234 (4)0.0505 (6)0.0224 (4)0.0004 (3)0.0069 (3)0.0096 (3)
N10.0334 (5)0.0409 (6)0.0276 (5)0.0035 (4)0.0113 (4)0.0100 (4)
N20.0239 (4)0.0438 (6)0.0243 (5)0.0019 (4)0.0069 (4)0.0107 (4)
N30.0224 (5)0.0857 (10)0.0292 (5)0.0024 (5)0.0086 (4)0.0155 (5)
C1B0.045 (2)0.0227 (15)0.0208 (13)0.0012 (14)0.0088 (15)0.0032 (10)
C2B0.045 (2)0.0379 (17)0.0259 (14)0.0056 (16)0.0156 (14)0.0043 (11)
C3B0.059 (3)0.0386 (18)0.0276 (14)0.0065 (18)0.0197 (17)0.0131 (11)
C4B0.065 (3)0.0320 (15)0.0343 (18)0.0086 (16)0.028 (2)0.0002 (13)
C5B0.055 (3)0.0457 (19)0.050 (2)0.0018 (19)0.031 (2)0.0083 (17)
C6B0.046 (2)0.0458 (19)0.041 (2)0.0010 (18)0.0182 (19)0.0113 (17)
C70.0638 (9)0.0303 (6)0.0298 (6)0.0083 (6)0.0238 (6)0.0061 (5)
C80.0488 (7)0.0349 (6)0.0335 (6)0.0037 (5)0.0202 (6)0.0097 (5)
C90.0389 (6)0.0323 (6)0.0279 (5)0.0005 (5)0.0126 (5)0.0065 (4)
C100.0397 (7)0.0478 (8)0.0320 (6)0.0081 (5)0.0135 (5)0.0127 (5)
C110.0240 (5)0.0424 (7)0.0238 (5)0.0017 (4)0.0067 (4)0.0040 (4)
C3A0.056 (3)0.044 (2)0.0397 (18)0.0139 (18)0.0194 (18)0.0134 (14)
C4A0.055 (3)0.0314 (17)0.0291 (15)0.0016 (18)0.017 (2)0.0062 (12)
C5A0.045 (3)0.0402 (19)0.044 (2)0.0033 (16)0.024 (2)0.0081 (16)
C6A0.038 (2)0.0309 (16)0.0338 (19)0.0064 (14)0.0144 (18)0.0112 (13)
C2A0.053 (2)0.0369 (19)0.0353 (17)0.0087 (17)0.0212 (16)0.0099 (13)
C1A0.038 (2)0.0219 (14)0.0268 (15)0.0032 (14)0.0161 (14)0.0043 (12)
Geometric parameters (Å, °) top
O1—C111.2472 (15)C5A—C6A1.389 (10)
N1—N21.3788 (15)C5B—C6B1.389 (10)
N1—C91.2915 (17)C7—C81.3344 (18)
N2—C111.3618 (15)C8—C91.4610 (19)
N3—C111.3398 (17)C9—C101.494 (2)
N2—H2B0.8800C2A—H2AA0.9500
N3—H3B0.8800C2B—H2BA0.9500
N3—H3C0.8800C3A—H3AA0.9500
C1A—C71.432 (5)C3B—H3BA0.9500
C1A—C6A1.391 (10)C4A—H4AA0.9500
C1A—C2A1.390 (7)C4B—H4BA0.9500
C1B—C2B1.390 (7)C5A—H5AA0.9500
C1B—C6B1.390 (11)C5B—H5BA0.9500
C1B—C71.556 (6)C6A—H6AA0.9500
C2A—C3A1.389 (8)C6B—H6BA0.9500
C2B—C3B1.390 (9)C7—H7A0.9500
C3A—C4A1.391 (12)C8—H8A0.9500
C3B—C4B1.390 (13)C10—H10B0.9800
C4A—C5A1.391 (9)C10—H10C0.9800
C4B—C5B1.391 (9)C10—H10A0.9800
N2—N1—C9118.31 (11)C3A—C2A—H2AA120.00
N1—N2—C11118.53 (11)C1A—C2A—H2AA120.00
N1—N2—H2B121.00C3B—C2B—H2BA120.00
C11—N2—H2B121.00C1B—C2B—H2BA120.00
C11—N3—H3B120.00C4A—C3A—H3AA120.00
H3B—N3—H3C120.00C2A—C3A—H3AA120.00
C11—N3—H3C120.00C4B—C3B—H3BA120.00
C6A—C1A—C7117.1 (4)C2B—C3B—H3BA120.00
C2A—C1A—C7122.6 (5)C5A—C4A—H4AA120.00
C2A—C1A—C6A119.9 (5)C3A—C4A—H4AA120.00
C2B—C1B—C7113.5 (6)C5B—C4B—H4BA120.00
C2B—C1B—C6B120.0 (6)C3B—C4B—H4BA120.00
C6B—C1B—C7126.4 (5)C4A—C5A—H5AA120.00
C1A—C2A—C3A120.1 (6)C6A—C5A—H5AA120.00
C1B—C2B—C3B120.0 (7)C4B—C5B—H5BA120.00
C2A—C3A—C4A120.0 (5)C6B—C5B—H5BA120.00
C2B—C3B—C4B120.0 (5)C5A—C6A—H6AA120.00
C3A—C4A—C5A120.0 (6)C1A—C6A—H6AA120.00
C3B—C4B—C5B120.0 (6)C5B—C6B—H6BA120.00
C4A—C5A—C6A120.0 (8)C1B—C6B—H6BA120.00
C4B—C5B—C6B120.0 (8)C1A—C7—H7A114.00
C1A—C6A—C5A120.0 (6)C1B—C7—H7A126.00
C1B—C6B—C5B120.0 (6)C8—C7—H7A114.00
C1B—C7—C8119.7 (3)C9—C8—H8A117.00
C1A—C7—C8132.9 (3)C7—C8—H8A117.00
C7—C8—C9126.08 (15)C9—C10—H10C110.00
N1—C9—C8114.27 (13)C9—C10—H10B109.00
C8—C9—C10120.69 (11)H10B—C10—H10C109.00
N1—C9—C10125.04 (12)H10A—C10—H10B110.00
N2—C11—N3117.53 (11)H10A—C10—H10C109.00
O1—C11—N3122.23 (11)C9—C10—H10A110.00
O1—C11—N2120.24 (12)
C9—N1—N2—C11173.34 (11)C2B—C1B—C7—C8178.1 (3)
N2—N1—C9—C8179.53 (10)C6B—C1B—C7—C82.8 (6)
N2—N1—C9—C101.37 (19)C1B—C2B—C3B—C4B0.0 (7)
N1—N2—C11—O1179.22 (11)C2B—C3B—C4B—C5B0.0 (7)
N1—N2—C11—N31.40 (17)C3B—C4B—C5B—C6B0.0 (8)
C6B—C1B—C2B—C3B0.0 (7)C4B—C5B—C6B—C1B0.0 (8)
C7—C1B—C2B—C3B179.2 (4)C1B—C7—C8—C9175.5 (2)
C2B—C1B—C6B—C5B0.0 (8)C7—C8—C9—N1178.13 (13)
C7—C1B—C6B—C5B179.1 (4)C7—C8—C9—C102.7 (2)
Hydrogen-bond geometry (Å, °) top
Cg1 and Cg2 are the centroids of the disordered benzene rings C1A –C6A and C1B–C6B, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.882.122.9785 (15)166
N3—H3B···O1ii0.882.082.9434 (14)168
N3—H3C···N10.882.282.6397 (16)104
C10—H10A···O1i0.982.513.2384 (17)131
C10—H10B···N1iii0.982.583.4566 (19)148
C4B—H4BA···Cg1iv0.952.863.618 (5)138
C4A—H4AA···Cg1iv0.952.763.590 (5)146
C4A—H4AA···Cg2iv0.952.933.714 (5)141
Symmetry codes: (i) −x+1/2, −y+1/2, −z+3; (ii) −x+1, y, −z+7/2; (iii) −x+1/2, −y+1/2, −z+2; (iv) x, −y+1, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1 and Cg2 are the centroids of the disordered benzene rings C1A –C6A and C1B–C6B, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.882.122.9785 (15)166
N3—H3B···O1ii0.882.082.9434 (14)168
C10—H10A···O1i0.982.513.2384 (17)131
C10—H10B···N1iii0.982.583.4566 (19)148
C4B—H4BA···Cg1iv0.952.863.618 (5)138
C4A—H4AA···Cg1iv0.952.763.590 (5)146
C4A—H4AA···Cg2iv0.952.933.714 (5)141
Symmetry codes: (i) −x+1/2, −y+1/2, −z+3; (ii) −x+1, y, −z+7/2; (iii) −x+1/2, −y+1/2, −z+2; (iv) x, −y+1, z−1/2.
Acknowledgements top

BN thanks the UGC for financial assistance through SAP and BSR one-time grants for the purchase of chemicals. HSY thanks the University of Mysore for research facilities. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

references
References top

Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.

Beraldo, H., Sinisterra, R. D., Teixeira, L. R., Vieira, R. P. & Doretto, M. C. (2002). Biochem. Biophys. Res. Commun. 296, 241–246.

Du, C. X., Guo, C., Hansell, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, F. E. (2004). J. Med. Chem. 47, 3212–3219.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahin, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.

Naik, D. V. & Palenik, G. J. (1974). Acta Cryst. B30, 2396–2401.

Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Sarojini, B. K., Narayana, B., Bindya, S., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o2946.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Teixeira, L. R., Sinisterra, R. D., Vieira, R. P., Doretto, M. C. & Beraldo, H. (2003). J. Incl. Phenom. Macro. Chem. 47, 77–82.

Wang, J.-L., Jia, Y.-J. & Yu, M. (2004). Acta Cryst. E60, o662–o663.

Yathirajan, H. S., Bindya, S., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5925–o5926.