supplementary materials


vm2141 scheme

Acta Cryst. (2012). E68, m67    [ doi:10.1107/S1600536811053827 ]

Hexakis(dimethyl sulfoxide-[kappa]O)nickel(II) bis(2,2-dicyanoethene-1,1-dithiolato-[kappa]2S,S')nickelate(II)

M. Niu, S. Fan and G. Liu

Abstract top

The reaction of NiCl2·6H2O with sodium 2,2-dicyanoethene-1,1-dithiolate [Na2(i-mnt)] in dimethyl sulfoxide produces the title complex, [Ni(C2H6OS)6][Ni(C4N2S2)2]. There is half each of an [Ni(C2H6OS)6]2- complex anion and an [Ni{(CH3)2SO}6]2+ complex cation in the asymmetric unit. The i-mnt ligand coordinates in a bidentate manner to the Ni atom in the anion through the two chelating S atoms in an approximate square-planar geometry. The Ni atom in the complex cation has an octahedral coordination environment with six dimethyl sulfoxide molecules as ligands.

Comment top

The bridging ligand 1,1-dicyanoethene-2,2-dithiolate has been attracting more and more attention due to its delocalized

π electron system able to build special planar conjugated structures (Yu et al., 2005). The title complex consists of one [Ni(i-mnt)2]2- (where i-mnt is 1,1-dicyanoethene-2,2-dithiolate) complex anion and one [Ni((CH3)2SO)6]2+ complex cation. For the [Ni(i-mnt)2]2- complex anion, the NiS4 group is square planar and tortiled slightly at an angle of 2.90 (14)° with respect to the plane of i-mnt ligand (Chen et al., 2005). FourNi-S bonds present two comparable distances of 2.2010 (11) and 2.2030 (11)Å, similar to the Ni-S distance of 2.172 (3)

Å in [K(N18C6)]2[Ni(mnt)2] (Gao et al., 2004). The average S-C, CN, C-C and C=C bond lengths were 1.717, 1.141, 1.418, 1.379 Å, respectively (Gao et al., 2005). The [Ni((CH3)2SO)6]2+ complex cation contains a nickel with six-coordinated octahedral geometry.

Related literature top

For related structures, see Gao et al. (2004, 2005); Yu et al. (2005); Chen et al. (2005) .

Experimental top

The title compound, [Ni((CH3)2SO)6][Ni(i-mnt)2] was synthesizd by the reaction of 0.05 mmol NiCl2.6H2O and 0.1 mmol Na2(i-mnt)(1,1-dicyanoethene-2,2-dithiolate sodium) in 5 ml water. The solution was stirred for 2 hours and then filtered. The precipitate was dissolved in 10ml Dimethyl Sulfoxide. After slow evaporation of the solution over one month, deep green crystals suitable for X-ray diffraction were obtained (56.8%, m.p. 527-529 K).

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H 0.96 Å, with Uiso(H) =1.2Ueq(C), and refined as riding on their parent atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 40% probability displacement ellipsoids for non-H atoms. Symmetry codes: (i) -x + 1,-y + 1,-z + 1, (ii) -x + 2, -y, -z + 1.
Hexakis(dimethyl sulfoxide-κO)nickel(II) bis(2,2-dicyanoethene-1,1-dithiolato-κ2S,S')nickelate(II) top
Crystal data top
C12H36NiO6S62+·C8N4NiS42F(000) = 896
Mr = 866.55Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2760 reflections
a = 8.3368 (10) Åθ = 2.5–24.3°
b = 12.6763 (17) ŵ = 1.55 mm1
c = 18.710 (2) ÅT = 298 K
β = 102.466 (2)°Needle, green
V = 1930.6 (4) Å30.50 × 0.48 × 0.05 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3379 independent reflections
Radiation source: fine-focus sealed tube2328 reflections with I > 2σ(I)
graphiteRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.511, Tmax = 0.921k = 1215
9458 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.0073P]
where P = (Fo2 + 2Fc2)/3
3379 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H36NiO6S62+·C8N4NiS42V = 1930.6 (4) Å3
Mr = 866.55Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3368 (10) ŵ = 1.55 mm1
b = 12.6763 (17) ÅT = 298 K
c = 18.710 (2) Å0.50 × 0.48 × 0.05 mm
β = 102.466 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3379 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2328 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.921Rint = 0.054
9458 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.30 e Å3
S = 1.06Δρmin = 0.35 e Å3
3379 reflectionsAbsolute structure: ?
199 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.02973 (18)
Ni21.00000.00000.50000.0415 (2)
N10.7064 (6)0.2565 (4)0.2505 (2)0.0863 (15)
N21.1494 (6)0.0945 (4)0.2174 (2)0.0751 (13)
O10.4945 (3)0.64165 (18)0.44513 (13)0.0367 (6)
O20.7372 (3)0.47506 (19)0.48840 (15)0.0440 (7)
O30.4122 (3)0.41769 (19)0.40520 (13)0.0436 (7)
S10.62727 (13)0.72370 (8)0.46849 (5)0.0412 (3)
S20.78272 (12)0.36249 (8)0.47193 (5)0.0385 (3)
S30.32535 (13)0.47016 (8)0.33476 (5)0.0391 (3)
S40.81754 (14)0.08901 (9)0.41999 (6)0.0489 (3)
S51.10676 (15)0.00988 (9)0.40228 (6)0.0533 (3)
C10.5310 (7)0.8291 (4)0.5044 (3)0.095 (2)
H1A0.44160.85530.46750.142*
H1B0.60920.88460.51980.142*
H1C0.48980.80470.54560.142*
C20.6505 (7)0.7821 (4)0.3864 (2)0.0732 (16)
H2A0.69830.73200.35860.110*
H2B0.72080.84260.39710.110*
H2C0.54490.80360.35860.110*
C30.9350 (5)0.3786 (3)0.4198 (2)0.0503 (11)
H3A0.88740.41200.37410.075*
H3B0.97770.31080.41060.075*
H3C1.02240.42160.44650.075*
C40.9093 (6)0.3174 (4)0.5552 (2)0.0585 (13)
H4A0.99980.36510.57010.088*
H4B0.95040.24840.54800.088*
H4C0.84620.31440.59240.088*
C50.2206 (6)0.3635 (4)0.2835 (2)0.0676 (14)
H5A0.29610.30660.28270.101*
H5B0.17560.38630.23430.101*
H5C0.13340.33990.30570.101*
C60.4776 (6)0.4904 (4)0.2835 (2)0.0600 (13)
H6A0.55260.54400.30650.090*
H6B0.42650.51230.23480.090*
H6C0.53650.42580.28130.090*
C70.9525 (5)0.0750 (3)0.3630 (2)0.0409 (10)
C80.9395 (5)0.1255 (3)0.2967 (2)0.0427 (10)
C90.8105 (6)0.1979 (4)0.2706 (2)0.0526 (12)
C101.0561 (6)0.1086 (3)0.2528 (2)0.0522 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0336 (4)0.0269 (4)0.0290 (4)0.0013 (3)0.0074 (3)0.0017 (3)
Ni20.0476 (5)0.0370 (4)0.0408 (4)0.0016 (4)0.0116 (3)0.0019 (3)
N10.092 (4)0.077 (3)0.076 (3)0.030 (3)0.011 (3)0.008 (2)
N20.080 (3)0.093 (3)0.058 (3)0.006 (3)0.029 (2)0.002 (2)
O10.0380 (16)0.0297 (14)0.0415 (14)0.0024 (12)0.0067 (12)0.0023 (12)
O20.0373 (17)0.0336 (16)0.0633 (18)0.0007 (12)0.0155 (14)0.0079 (13)
O30.061 (2)0.0358 (15)0.0309 (14)0.0010 (14)0.0039 (13)0.0047 (12)
S10.0402 (7)0.0377 (6)0.0461 (6)0.0039 (5)0.0104 (5)0.0007 (5)
S20.0339 (6)0.0327 (6)0.0497 (6)0.0002 (4)0.0104 (5)0.0077 (5)
S30.0409 (6)0.0434 (6)0.0325 (5)0.0031 (5)0.0071 (4)0.0050 (4)
S40.0502 (8)0.0503 (7)0.0486 (6)0.0102 (5)0.0157 (5)0.0005 (5)
S50.0537 (8)0.0614 (8)0.0473 (6)0.0163 (6)0.0161 (5)0.0049 (6)
C10.094 (5)0.053 (3)0.155 (6)0.023 (3)0.067 (4)0.048 (4)
C20.086 (4)0.072 (3)0.063 (3)0.032 (3)0.018 (3)0.015 (3)
C30.045 (3)0.048 (3)0.063 (3)0.003 (2)0.022 (2)0.011 (2)
C40.067 (3)0.049 (3)0.056 (3)0.014 (2)0.004 (2)0.000 (2)
C50.077 (4)0.074 (3)0.049 (3)0.025 (3)0.008 (2)0.017 (3)
C60.062 (3)0.064 (3)0.061 (3)0.005 (3)0.030 (3)0.006 (2)
C70.045 (3)0.035 (2)0.041 (2)0.0014 (19)0.0061 (19)0.0096 (18)
C80.045 (3)0.042 (3)0.041 (2)0.002 (2)0.008 (2)0.0053 (19)
C90.066 (3)0.049 (3)0.040 (2)0.003 (3)0.005 (2)0.010 (2)
C100.065 (4)0.051 (3)0.040 (3)0.002 (2)0.008 (2)0.001 (2)
Geometric parameters (Å, °) top
Ni1—O32.052 (2)S5—C71.716 (4)
Ni1—O3i2.052 (2)C1—H1A0.9600
Ni1—O2i2.060 (3)C1—H1B0.9600
Ni1—O22.060 (3)C1—H1C0.9600
Ni1—O12.064 (2)C2—H2A0.9600
Ni1—O1i2.064 (2)C2—H2B0.9600
Ni2—S42.2010 (11)C2—H2C0.9600
Ni2—S4ii2.2010 (11)C3—H3A0.9600
Ni2—S5ii2.2030 (11)C3—H3B0.9600
Ni2—S52.2030 (11)C3—H3C0.9600
N1—C91.142 (6)C4—H4A0.9600
N2—C101.139 (5)C4—H4B0.9600
O1—S11.513 (3)C4—H4C0.9600
O2—S21.525 (3)C5—H5A0.9600
O3—S31.514 (3)C5—H5B0.9600
S1—C21.752 (4)C5—H5C0.9600
S1—C11.765 (5)C6—H6A0.9600
S2—C31.772 (4)C6—H6B0.9600
S2—C41.777 (4)C6—H6C0.9600
S3—C61.767 (4)C7—C81.378 (5)
S3—C51.775 (4)C8—C91.418 (6)
S4—C71.719 (4)C8—C101.418 (6)
O3—Ni1—O3i180.000 (1)H1B—C1—H1C109.5
O3—Ni1—O2i89.86 (11)S1—C2—H2A109.5
O3i—Ni1—O2i90.14 (11)S1—C2—H2B109.5
O3—Ni1—O290.14 (11)H2A—C2—H2B109.5
O3i—Ni1—O289.86 (11)S1—C2—H2C109.5
O2i—Ni1—O2180.00 (15)H2A—C2—H2C109.5
O3—Ni1—O192.69 (9)H2B—C2—H2C109.5
O3i—Ni1—O187.31 (9)S2—C3—H3A109.5
O2i—Ni1—O190.01 (10)S2—C3—H3B109.5
O2—Ni1—O189.99 (10)H3A—C3—H3B109.5
O3—Ni1—O1i87.31 (9)S2—C3—H3C109.5
O3i—Ni1—O1i92.69 (9)H3A—C3—H3C109.5
O2i—Ni1—O1i89.99 (10)H3B—C3—H3C109.5
O2—Ni1—O1i90.01 (10)S2—C4—H4A109.5
O1—Ni1—O1i180.0S2—C4—H4B109.5
S4—Ni2—S4ii180.00 (5)H4A—C4—H4B109.5
S4—Ni2—S5ii101.04 (4)S2—C4—H4C109.5
S4ii—Ni2—S5ii78.96 (4)H4A—C4—H4C109.5
S4—Ni2—S578.96 (4)H4B—C4—H4C109.5
S4ii—Ni2—S5101.04 (4)S3—C5—H5A109.5
S5ii—Ni2—S5180.0S3—C5—H5B109.5
S1—O1—Ni1121.20 (14)H5A—C5—H5B109.5
S2—O2—Ni1116.83 (15)S3—C5—H5C109.5
S3—O3—Ni1122.93 (15)H5A—C5—H5C109.5
O1—S1—C2104.45 (19)H5B—C5—H5C109.5
O1—S1—C1105.4 (2)S3—C6—H6A109.5
C2—S1—C199.2 (3)S3—C6—H6B109.5
O2—S2—C3104.06 (18)H6A—C6—H6B109.5
O2—S2—C4104.50 (18)S3—C6—H6C109.5
C3—S2—C499.1 (2)H6A—C6—H6C109.5
O3—S3—C6105.8 (2)H6B—C6—H6C109.5
O3—S3—C5102.88 (19)C8—C7—S5125.7 (3)
C6—S3—C598.3 (2)C8—C7—S4125.1 (3)
C7—S4—Ni285.42 (14)S5—C7—S4109.2 (2)
C7—S5—Ni285.44 (14)C7—C8—C9121.2 (4)
S1—C1—H1A109.5C7—C8—C10121.3 (4)
S1—C1—H1B109.5C9—C8—C10117.5 (4)
H1A—C1—H1B109.5N1—C9—C8179.0 (5)
S1—C1—H1C109.5N2—C10—C8179.7 (6)
H1A—C1—H1C109.5
O3—Ni1—O1—S1142.43 (17)Ni1—O3—S3—C5161.4 (2)
O3i—Ni1—O1—S137.57 (17)S4ii—Ni2—S4—C7120 (100)
O2i—Ni1—O1—S1127.71 (17)S5ii—Ni2—S4—C7173.58 (13)
O2—Ni1—O1—S152.29 (17)S5—Ni2—S4—C76.42 (13)
O1i—Ni1—O1—S1139 (100)S4—Ni2—S5—C76.44 (13)
O3—Ni1—O2—S248.30 (17)S4ii—Ni2—S5—C7173.56 (13)
O3i—Ni1—O2—S2131.70 (17)S5ii—Ni2—S5—C7112 (14)
O2i—Ni1—O2—S213 (48)Ni2—S5—C7—C8170.5 (3)
O1—Ni1—O2—S2140.99 (17)Ni2—S5—C7—S48.58 (17)
O1i—Ni1—O2—S239.01 (17)Ni2—S4—C7—C8170.5 (3)
O3i—Ni1—O3—S3178 (100)Ni2—S4—C7—S58.59 (18)
O2i—Ni1—O3—S371.7 (2)S5—C7—C8—C9177.2 (3)
O2—Ni1—O3—S3108.3 (2)S4—C7—C8—C91.7 (6)
O1—Ni1—O3—S318.3 (2)S5—C7—C8—C101.6 (6)
O1i—Ni1—O3—S3161.7 (2)S4—C7—C8—C10179.4 (3)
Ni1—O1—S1—C2145.1 (2)C7—C8—C9—N126 (32)
Ni1—O1—S1—C1110.9 (3)C10—C8—C9—N1153 (32)
Ni1—O2—S2—C3149.93 (19)C7—C8—C10—N279 (100)
Ni1—O2—S2—C4106.6 (2)C9—C8—C10—N2102 (100)
Ni1—O3—S3—C695.9 (2)
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z+1.
Table 1
Selected geometric parameters (Å, °)
top
Ni1—O32.052 (2)Ni2—S42.2010 (11)
Ni1—O22.060 (3)Ni2—S52.2030 (11)
Ni1—O12.064 (2)
O3—Ni1—O290.14 (11)S4—Ni2—S578.96 (4)
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (No. 20671048, 21041002).

references
References top

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H. M. & Yu, H. L. (2005). Chin. J. Spectrosc. Lab. 22, 740–742.

Gao, X. K., Dou, J. M. & Dong, F. Y. (2004). J. Inorg. Organomet. Polym. 14, 227-237.

Gao, X. K., Dou, J. M. & Li, D. C. (2005). J. Mol. Struct. 733, 181–186.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yu, H. L., Chen, H. M. & Dou, J. M. (2005). Chin. J. Spectrosc. Lab. 22, 556–558.