supplementary materials


vm2142 scheme

Acta Cryst. (2012). E68, m69    [ doi:10.1107/S1600536811053414 ]

Diaquabis(5-methyl-1,2-oxazole-3-carboxylato-[kappa]2N,O3)cobalt(II) dihydrate

Y. Wang and J. Zhao

Abstract top

In the title compound, [Co(C5H4NO3)2(H2O)2]·2H2O, the coordination polyhedron around the six-coordinate CoII ion is formed by two equatorial 5-methylisoxazole-3-carboxylate ligands in an N,O3-bidentate fashion through the isoxazole N atom and a carboxylate O atom, and by two axial water ligands. The asymmetric unit consists of half of the complex and one water molecule (the full comlex being completed by application of inversion). In the crystal, the water molecules participate in the formation of an intricate three-dimensional network of hydrogen bonds involving the coordinated water molecule and the carboxylate groups.

Comment top

Isoxazole derivatives are versatile ligands towards transition metal ions both in man-made and natural systems. They are not only used as (bio)catalysts but also for dioxygen transport and electron storage (Luo et al., 2011). As part of our interest in isoxazole derivatives, we report here the crystal structure of a new cobalt complex.

The molecular structure of the title compound is shown in Fig. 1. All non-H atoms, except O3 and O4, are located in the same plane with an r.m.s. deviation of 0.0247 Å.

The coordination polyhedron around the six coordinated central CoII ion is described as a octahedron, formed by two equatorial 5-methylisoxazole-3-carboxylates in an O, N bidentate fashion through the isoxazole nitrogen and the carboxylate oxygen atoms and by two axial water ligands.

The title compound forms a three-dimensional structure via intermolecular O—H···O hydrogen bonds interactions (Table 1, Fig. 2).

Related literature top

For a related structure, see: Luo et al. (2011).

Experimental top

0.06 g CoCl2.6H2O (mg) was added to a methanol solution of 0.06 g 5-methyl-3-isoxazolecarboxylic acid and stirred for three h at room temperature. The resulting solution was filtered off and allowed to evaporate at room temperature. Pillar pink crystals of the title compound were obtained within 3 days.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH), C—H = 0.96 Å (CH3) with Uiso(H) = 1.2Ueq(CH) and Uiso(H) = 1.5Ueq(CH3). H atoms of water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.79 (1) Å with Uiso(H) = 1.5Ueq(O) or Uiso(H) = 2.0 Ueq(O). In the last cycles of refinement, they were treated as riding on their parent O atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: (A) -x+1, -y, -z+1.
[Figure 2] Fig. 2. A packing view down the a axis showing the three dimensional network. Intermolecular hydrogen bonds are shown as dashed lines.
Diaquabis(5-methyl-1,2-oxazole-3-carboxylato- κ2N,O3)cobalt(II) dihydrate top
Crystal data top
[Co(C5H4NO3)2(H2O)2]·2H2OF(000) = 394
Mr = 383.18Dx = 1.664 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1344 reflections
a = 5.260 (3) Åθ = 2.2–25.0°
b = 18.528 (10) ŵ = 1.18 mm1
c = 8.077 (4) ÅT = 296 K
β = 103.707 (6)°Pillar, pink
V = 764.9 (7) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
1344 independent reflections
Radiation source: fine-focus sealed tube1202 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 2.2°
CCD_Profile_fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2222
Tmin = 0.983, Tmax = 0.983l = 99
5217 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2614P]
where P = (Fo2 + 2Fc2)/3
1344 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(C5H4NO3)2(H2O)2]·2H2OV = 764.9 (7) Å3
Mr = 383.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.260 (3) ŵ = 1.18 mm1
b = 18.528 (10) ÅT = 296 K
c = 8.077 (4) Å0.20 × 0.20 × 0.20 mm
β = 103.707 (6)°
Data collection top
Rigaku SCXmini
diffractometer
1344 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1202 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.983Rint = 0.034
5217 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.28 e Å3
S = 1.06Δρmin = 0.38 e Å3
1344 reflectionsAbsolute structure: ?
123 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.50000.02592 (16)
O10.8288 (3)0.18878 (7)0.38174 (19)0.0361 (4)
O50.0881 (3)0.06221 (8)0.16193 (19)0.0345 (4)
O20.7638 (3)0.08451 (7)0.50526 (17)0.0293 (3)
N10.3171 (3)0.06356 (9)0.2896 (2)0.0312 (4)
O30.3032 (4)0.05798 (10)0.6557 (2)0.0369 (4)
C50.6992 (4)0.13440 (10)0.3955 (3)0.0266 (4)
C40.4387 (4)0.12311 (10)0.2705 (3)0.0270 (4)
C30.2957 (4)0.16322 (12)0.1325 (3)0.0330 (5)
H30.33930.20770.09370.040*
C10.1485 (5)0.13125 (15)0.0775 (3)0.0462 (6)
H1A0.14580.17820.12750.069*
H1B0.30600.12590.03820.069*
H1C0.14270.09490.16120.069*
C20.0819 (4)0.12328 (12)0.0685 (3)0.0313 (5)
O40.3191 (4)0.20264 (10)0.6234 (3)0.0511 (5)
H3A0.332 (6)0.0981 (18)0.655 (4)0.051 (9)*
H3B0.144 (8)0.0564 (18)0.623 (5)0.081 (12)*
H4B0.175 (8)0.2028 (19)0.555 (5)0.080 (12)*
H4A0.309 (7)0.232 (2)0.698 (5)0.093 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0265 (2)0.0213 (2)0.0275 (3)0.00130 (14)0.00157 (17)0.00343 (14)
O10.0380 (8)0.0292 (8)0.0374 (9)0.0093 (6)0.0014 (7)0.0050 (7)
O50.0321 (8)0.0325 (8)0.0324 (8)0.0032 (6)0.0051 (6)0.0006 (6)
O20.0287 (7)0.0267 (7)0.0290 (8)0.0024 (6)0.0002 (6)0.0046 (6)
N10.0300 (9)0.0284 (9)0.0301 (10)0.0019 (7)0.0030 (7)0.0033 (7)
O30.0360 (10)0.0318 (10)0.0424 (10)0.0002 (7)0.0082 (7)0.0041 (7)
C50.0281 (10)0.0244 (10)0.0269 (11)0.0005 (8)0.0059 (8)0.0007 (8)
C40.0297 (10)0.0254 (10)0.0252 (11)0.0006 (8)0.0052 (8)0.0007 (8)
C30.0374 (11)0.0294 (11)0.0305 (11)0.0014 (9)0.0048 (9)0.0085 (9)
C10.0409 (13)0.0579 (16)0.0329 (13)0.0074 (11)0.0051 (10)0.0006 (11)
C20.0344 (11)0.0343 (11)0.0234 (11)0.0064 (9)0.0031 (9)0.0012 (9)
O40.0483 (11)0.0376 (10)0.0598 (12)0.0073 (8)0.0024 (9)0.0118 (9)
Geometric parameters (Å, °) top
Co1—O2i2.0860 (16)O3—H3B0.82 (4)
Co1—O22.0860 (16)C5—C41.512 (3)
Co1—N1i2.1035 (18)C4—C31.401 (3)
Co1—N12.1035 (18)C3—C21.343 (3)
Co1—O3i2.1038 (18)C3—H30.9300
Co1—O32.1038 (18)C1—C21.485 (3)
O1—C51.236 (2)C1—H1A0.9600
O5—C21.356 (3)C1—H1B0.9600
O5—N11.388 (2)C1—H1C0.9600
O2—C51.270 (2)O4—H4B0.83 (4)
N1—C41.303 (3)O4—H4A0.83 (5)
O3—H3A0.76 (3)
O2i—Co1—O2180.00 (5)Co1—O3—H3B113 (3)
O2i—Co1—N1i76.76 (6)H3A—O3—H3B103 (3)
O2—Co1—N1i103.24 (6)O1—C5—O2126.42 (19)
O2i—Co1—N1103.24 (6)O1—C5—C4119.00 (17)
O2—Co1—N176.76 (6)O2—C5—C4114.57 (16)
N1i—Co1—N1180.0N1—C4—C3110.96 (18)
O2i—Co1—O3i91.37 (8)N1—C4—C5115.51 (17)
O2—Co1—O3i88.63 (8)C3—C4—C5133.53 (18)
N1i—Co1—O3i90.08 (8)C2—C3—C4104.87 (19)
N1—Co1—O3i89.92 (8)C2—C3—H3127.6
O2i—Co1—O388.63 (8)C4—C3—H3127.6
O2—Co1—O391.37 (8)C2—C1—H1A109.5
N1i—Co1—O389.92 (8)C2—C1—H1B109.5
N1—Co1—O390.08 (8)H1A—C1—H1B109.5
O3i—Co1—O3180.00 (7)C2—C1—H1C109.5
C2—O5—N1107.48 (15)H1A—C1—H1C109.5
C5—O2—Co1117.73 (12)H1B—C1—H1C109.5
C4—N1—O5106.92 (16)C3—C2—O5109.77 (18)
C4—N1—Co1115.26 (13)C3—C2—C1134.6 (2)
O5—N1—Co1137.76 (13)O5—C2—C1115.60 (19)
Co1—O3—H3A112 (2)H4B—O4—H4A106 (3)
Symmetry codes: (i) −x+1, −y, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1ii0.83 (5)2.07 (5)2.890 (3)172 (4)
O4—H4B···O1iii0.83 (4)2.03 (4)2.853 (3)172 (3)
O3—H3B···O2iii0.82 (4)2.07 (4)2.852 (3)161 (3)
O3—H3A···O40.76 (3)1.95 (3)2.696 (3)167 (3)
Symmetry codes: (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.83 (5)2.07 (5)2.890 (3)172 (4)
O4—H4B···O1ii0.83 (4)2.03 (4)2.853 (3)172 (3)
O3—H3B···O2ii0.82 (4)2.07 (4)2.852 (3)161 (3)
O3—H3A···O40.76 (3)1.95 (3)2.696 (3)167 (3)
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1, y, z.
references
References top

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Luo, Y.-H., Qian, X.-M., Gao, G., Li, J.-F. & Mao, S.-L. (2011). Acta Cryst. E67, m172.

Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.