supplementary materials


vn2025 scheme

Acta Cryst. (2012). E68, m76    [ doi:10.1107/S1600536811053785 ]

Bis(1,10-phenanthroline-5,6-dione-[kappa]2N,N')silver(I) 2-hydroxy-3,5-dinitrobenzoate

S.-T. Wang, G.-B. Che, C.-B. Liu, X. Wang and L. Liu

Abstract top

In the cation of the title salt, [Ag(C12H6N2O2)2](C7H3N2O7), the AgI atom is coordinated in a distorted tetrahedral geometry by four N atoms from two 1,10-phenanthroline-5,6-dione ligands, while the 3,5-dinitrosalicylate anion has only a short contact [2.847 (6) Å] between one of its O atoms and the AgI atom. The dihedral angle between the two 1,10-phenanthroline-5,6-dione ligands is 58.4 (1)°. There is an intramolecular O-H...O hydrogen bond in the 3,5-dinitrosalicylate anion.

Comment top

The design and construction of supramolecular architectures have received considerable attention in recent years, mostly motivated by their intriguing structural features and potential applications in molecular adsorption, molecular sensing, magnetism, catalysis and non-linear optics (Che et al., 2008). Metal complexes with 1,10-phenantroline-5,6-dione (L) and 3,5-dinitrosalicylic acid as important ligands for the construction of metal-organic supramolecular architectures have been increasingly studied over recent years (Hiort et al., 1993; Onuegbu et al., 2009; Song et al., 2007). We report herein on the crystal structure of the title compound (Fig. 1). The molecular structure of the title compound, is made up of one [AgL2]+ cation and one 3,5-dinitrosalicylate anion. The AgI atom is surrounded by four N atoms from two 1,10-phenanthroline-5,6-dione ligands, while the 3,5-dinitrosalicylate ligand is uncoordinated. In the compound the dihedral angle between the phendione ligand A (C1-C12, N1, N2, O1 and O2) and B (C13-C24, N3, N4, O3, and O4) is 58.4 (1)°. The dihedral angle between B and 3,5-dinitrosalicylate ligand C (C25-C31, N5, N6, O5-O11) is 56.1 (2)°. The dihedral angle between A and C is 2.4 (9)°, suggesting that the planes of rings A and C are almost parallel. In addition, in the 3,5-dinitrosalicylate ligand, there is one intramolecular O–H···O hydrogen bond (Fig. 2).

Related literature top

For a general background to the structures and potential applications of supramolecular architectures with 1,10-phenantroline-5,6-dione and 3,5-dinitrosalicylic acid, see: Hiort et al. (1993); Song et al. (2007); Che et al. (2008); Onuegbu et al. (2009). For the synthesis of the 1,10-phenantroline-5,6-dione ligand, see: Dickeson & Sumers (1970).

Experimental top

The L ligand was synthesized according to the literature method (Dickeson & Sumers, 1970). The title compound was synthesized under hydrothermal conditions. A mixture of L (0.042 g, 0.2 mmol), 3,5-dinitrosalicylic acid (0.046 g, 0.2 mmol), AgNO3 (0.034 g, 0.2 mmol) and water (10 mL) was placed in a 25 mL Teflon-lined autoclave and heated for 3 days at 433 K under autogenous pressure. Upon cooling and opening the bomb, yellow block-shaped crystals were obtained, then washed with water and dried in air.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Ueq(C). The hydrogen atom of the hydroxyl group was located in a difference Fourier map, and was refined with a suitable O—H distance restraint; Uiso(H) = 1.5 Ueq(O). The geometry of the aromatic rings was regularized using distance and planariety restraints.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS-97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the O–H···O hydrogen bonds interaction.
(I) top
Crystal data top
C24H12AgN4O4·C7H3N2O7F(000) = 1512
Mr = 755.36Dx = 1.817 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5197 reflections
a = 11.757 (2) Åθ = 3.2–25.4°
b = 18.297 (4) ŵ = 0.81 mm1
c = 13.223 (3) ÅT = 174 K
β = 103.91 (3)°Prism, yellow
V = 2761.1 (11) Å30.3 × 0.24 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
5059 independent reflections
Radiation source: fine-focus sealed tube3914 reflections with I > 2σ(I)
graphiteRint = 0.052
ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
SADABS (Bruker, 2002)
h = 1411
Tmin = 0.780, Tmax = 0.910k = 1722
12726 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0354P)2 + 13.4705P]
where P = (Fo2 + 2Fc2)/3
5013 reflections(Δ/σ)max < 0.001
442 parametersΔρmax = 1.11 e Å3
22 restraintsΔρmin = 0.72 e Å3
Crystal data top
C24H12AgN4O4·C7H3N2O7V = 2761.1 (11) Å3
Mr = 755.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.757 (2) ŵ = 0.81 mm1
b = 18.297 (4) ÅT = 174 K
c = 13.223 (3) Å0.3 × 0.24 × 0.2 mm
β = 103.91 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
3914 reflections with I > 2σ(I)
Absorption correction: multi-scan
SADABS (Bruker, 2002)
Rint = 0.052
Tmin = 0.780, Tmax = 0.910θmax = 25.4°
12726 measured reflectionsStandard reflections: 0
5059 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.083 w = 1/[σ2(Fo2) + (0.0354P)2 + 13.4705P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163Δρmax = 1.11 e Å3
S = 1.11Δρmin = 0.72 e Å3
5013 reflectionsAbsolute structure: ?
442 parametersFlack parameter: ?
22 restraintsRogers parameter: ?
H-atom parameters constrained
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.21081 (6)0.44038 (3)0.52487 (5)0.0540 (2)
C10.4793 (7)0.5137 (4)0.6222 (5)0.0435 (18)
H10.43990.55800.60740.052*
C20.5976 (7)0.5157 (4)0.6690 (6)0.048 (2)
H20.63710.55990.68450.058*
C30.6552 (7)0.4497 (4)0.6920 (6)0.0470 (19)
H30.73450.44880.72480.056*
C40.5941 (6)0.3844 (4)0.6659 (5)0.0380 (16)
C50.6515 (9)0.3155 (4)0.6883 (7)0.062 (2)
C60.5895 (7)0.2505 (5)0.6710 (7)0.063 (2)
C70.4678 (6)0.2544 (4)0.6244 (5)0.0431 (18)
C80.3994 (8)0.1885 (4)0.6037 (6)0.053 (2)
H80.43400.14330.62290.064*
C90.2836 (9)0.1930 (5)0.5557 (7)0.063 (2)
H90.23880.15080.54030.075*
C100.2342 (7)0.2594 (5)0.5305 (7)0.055 (2)
H100.15520.26130.49660.066*
C110.4090 (6)0.3201 (3)0.5978 (5)0.0338 (16)
C120.4738 (5)0.3869 (3)0.6196 (5)0.0335 (16)
C130.0848 (7)0.4147 (4)0.2775 (7)0.055 (2)
H130.10800.36660.29330.066*
C140.0374 (8)0.4324 (5)0.1743 (7)0.061 (2)
H140.02870.39720.12230.073*
C150.0034 (7)0.5036 (5)0.1506 (6)0.053 (2)
H150.02980.51700.08200.064*
C160.0190 (6)0.5564 (4)0.2312 (5)0.0432 (18)
C170.0122 (5)0.6312 (4)0.2098 (5)0.052 (2)
C180.0077 (7)0.6805 (4)0.2948 (6)0.055 (2)
C190.0460 (6)0.6571 (4)0.3993 (6)0.0447 (18)
C200.0688 (7)0.7058 (4)0.4853 (7)0.055 (2)
H200.04830.75480.47490.067*
C210.1205 (8)0.6816 (5)0.5829 (7)0.059 (2)
H210.13480.71310.63980.071*
C220.1506 (7)0.6090 (5)0.5945 (6)0.056 (2)
H220.18650.59250.66110.067*
C230.0809 (6)0.5844 (3)0.4175 (5)0.0369 (16)
C240.0632 (5)0.5330 (3)0.3334 (5)0.0322 (15)
C250.6149 (7)0.4146 (4)0.9278 (5)0.0419 (18)
C260.5083 (7)0.4530 (4)0.8867 (5)0.0411 (18)
C270.4075 (6)0.4103 (4)0.8430 (5)0.0388 (17)
C280.4092 (7)0.3351 (4)0.8460 (5)0.0433 (18)
H280.34210.30800.81810.052*
C290.5165 (8)0.3002 (4)0.8928 (5)0.0434 (19)
C300.6177 (7)0.3387 (4)0.9327 (6)0.0435 (18)
H300.68710.31430.96250.052*
C310.2956 (8)0.4467 (5)0.7881 (6)0.050 (2)
N10.4178 (5)0.4524 (3)0.5970 (4)0.0347 (13)
N20.2931 (5)0.3228 (3)0.5518 (5)0.0399 (14)
N30.0992 (5)0.4629 (3)0.3562 (5)0.0422 (15)
N40.1319 (5)0.5605 (3)0.5164 (5)0.0423 (14)
N50.7268 (7)0.4516 (5)0.9629 (5)0.0587 (19)
N60.5177 (8)0.2213 (4)0.9005 (5)0.0560 (19)
O10.7645 (7)0.3121 (4)0.7270 (6)0.088 (2)
O20.6419 (7)0.1890 (4)0.6988 (6)0.096 (2)
O30.0430 (5)0.6542 (3)0.1162 (4)0.0700 (18)
O40.0502 (6)0.7445 (3)0.2780 (5)0.080 (2)
O50.8165 (6)0.4147 (4)0.9745 (6)0.091 (2)
O60.7295 (6)0.5175 (4)0.9763 (6)0.085 (2)
O70.5032 (6)0.5236 (3)0.8852 (4)0.0608 (16)
H70.43650.53660.85650.091*
O80.2947 (6)0.5172 (3)0.7949 (5)0.0684 (17)
O90.2133 (5)0.4109 (4)0.7368 (5)0.0641 (16)
O100.4296 (7)0.1876 (3)0.8584 (5)0.0713 (19)
O110.6097 (6)0.1916 (3)0.9511 (5)0.0684 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0472 (4)0.0491 (4)0.0609 (4)0.0150 (3)0.0036 (3)0.0149 (3)
C10.056 (5)0.038 (4)0.039 (4)0.007 (4)0.015 (4)0.001 (3)
C20.054 (5)0.046 (5)0.048 (5)0.011 (4)0.019 (4)0.001 (4)
C30.033 (4)0.065 (6)0.042 (4)0.003 (4)0.008 (3)0.006 (4)
C40.036 (4)0.043 (4)0.037 (4)0.007 (3)0.013 (3)0.001 (3)
C50.084 (7)0.059 (5)0.049 (5)0.022 (5)0.028 (5)0.008 (4)
C60.067 (5)0.068 (6)0.057 (5)0.007 (5)0.019 (4)0.001 (5)
C70.056 (4)0.045 (4)0.033 (4)0.005 (4)0.020 (3)0.001 (3)
C80.085 (5)0.031 (4)0.049 (5)0.014 (4)0.026 (4)0.008 (4)
C90.077 (5)0.053 (5)0.064 (6)0.012 (5)0.027 (4)0.010 (5)
C100.043 (5)0.050 (5)0.072 (6)0.002 (4)0.014 (4)0.009 (4)
C110.044 (4)0.027 (4)0.031 (4)0.008 (3)0.011 (3)0.001 (3)
C120.041 (4)0.031 (4)0.030 (4)0.001 (3)0.011 (3)0.002 (3)
C130.051 (5)0.036 (4)0.072 (6)0.001 (4)0.005 (4)0.002 (4)
C140.056 (6)0.057 (6)0.063 (6)0.002 (4)0.002 (4)0.024 (5)
C150.047 (5)0.060 (6)0.047 (5)0.001 (4)0.003 (4)0.002 (4)
C160.032 (4)0.042 (4)0.053 (5)0.000 (3)0.006 (3)0.004 (4)
C170.041 (5)0.053 (5)0.058 (5)0.003 (4)0.002 (4)0.019 (4)
C180.041 (5)0.049 (5)0.071 (6)0.004 (4)0.004 (4)0.006 (5)
C190.038 (4)0.037 (4)0.058 (5)0.001 (3)0.008 (4)0.001 (4)
C200.045 (5)0.035 (4)0.084 (7)0.001 (4)0.012 (5)0.008 (4)
C210.052 (5)0.055 (5)0.069 (6)0.003 (4)0.012 (5)0.017 (5)
C220.047 (5)0.070 (6)0.047 (5)0.002 (4)0.004 (4)0.005 (4)
C230.028 (4)0.036 (4)0.045 (4)0.003 (3)0.005 (3)0.002 (3)
C240.022 (3)0.029 (4)0.045 (4)0.000 (3)0.006 (3)0.004 (3)
C250.056 (5)0.040 (4)0.029 (4)0.010 (4)0.008 (3)0.003 (3)
C260.061 (5)0.033 (4)0.033 (4)0.001 (4)0.018 (4)0.003 (3)
C270.045 (5)0.039 (4)0.035 (4)0.001 (3)0.016 (3)0.003 (3)
C280.061 (5)0.042 (4)0.032 (4)0.008 (4)0.019 (4)0.002 (3)
C290.071 (6)0.030 (4)0.035 (4)0.006 (4)0.024 (4)0.006 (3)
C300.047 (5)0.046 (5)0.038 (4)0.004 (4)0.013 (3)0.004 (3)
C310.060 (6)0.049 (5)0.048 (5)0.014 (4)0.024 (4)0.011 (4)
N10.036 (3)0.032 (3)0.035 (3)0.002 (3)0.008 (3)0.000 (3)
N20.038 (4)0.037 (3)0.045 (3)0.000 (3)0.009 (3)0.001 (3)
N30.038 (4)0.032 (3)0.053 (4)0.000 (3)0.004 (3)0.002 (3)
N40.037 (3)0.043 (4)0.046 (4)0.003 (3)0.007 (3)0.006 (3)
N50.059 (5)0.071 (6)0.042 (4)0.011 (4)0.006 (3)0.007 (4)
N60.091 (6)0.039 (4)0.046 (4)0.003 (4)0.032 (4)0.003 (3)
O10.081 (5)0.099 (6)0.084 (5)0.033 (4)0.020 (4)0.021 (4)
O20.086 (6)0.079 (5)0.110 (6)0.022 (4)0.003 (4)0.000 (4)
O30.067 (4)0.071 (4)0.067 (4)0.003 (3)0.005 (3)0.024 (3)
O40.097 (5)0.040 (4)0.094 (5)0.018 (3)0.005 (4)0.016 (3)
O50.055 (5)0.099 (6)0.113 (6)0.004 (4)0.008 (4)0.033 (5)
O60.089 (5)0.050 (4)0.098 (5)0.024 (4)0.016 (4)0.002 (4)
O70.086 (5)0.039 (3)0.058 (4)0.000 (3)0.019 (3)0.001 (3)
O80.080 (5)0.057 (4)0.073 (4)0.022 (3)0.028 (3)0.010 (3)
O90.041 (4)0.081 (4)0.069 (4)0.004 (3)0.012 (3)0.002 (3)
O100.110 (6)0.039 (3)0.066 (4)0.015 (4)0.025 (4)0.003 (3)
O110.088 (5)0.042 (3)0.083 (4)0.017 (3)0.036 (4)0.021 (3)
Geometric parameters (Å, °) top
Ag1—N12.400 (6)C16—C241.394 (7)
Ag1—N22.351 (6)C16—C171.428 (7)
Ag1—N32.337 (6)C17—O31.275 (7)
Ag1—N42.377 (6)C17—C181.432 (8)
Ag1—O92.847 (6)C18—O41.272 (9)
C1—N11.333 (9)C18—C191.438 (8)
C1—C21.380 (11)C19—C231.397 (7)
C1—H10.9300C19—C201.419 (11)
C2—C31.383 (11)C20—C211.361 (12)
C2—H20.9300C20—H200.9300
C3—C41.394 (10)C21—C221.374 (12)
C3—H30.9300C21—H210.9300
C4—C121.400 (7)C22—N41.340 (10)
C4—C51.426 (8)C22—H220.9300
C5—O11.304 (11)C23—N41.373 (8)
C5—C61.385 (8)C23—C241.433 (7)
C6—O21.293 (10)C24—N31.362 (8)
C6—C71.417 (8)C25—C301.390 (10)
C7—C111.390 (7)C25—C261.426 (10)
C7—C81.438 (11)C25—N51.454 (10)
C8—C91.358 (12)C26—O71.292 (8)
C8—H80.9300C26—C271.421 (10)
C9—C101.353 (12)C27—C281.377 (10)
C9—H90.9300C27—C311.498 (11)
C10—N21.347 (10)C28—C291.416 (11)
C10—H100.9300C28—H280.9300
C11—N21.353 (8)C29—C301.374 (11)
C11—C121.432 (7)C29—N61.448 (10)
C12—N11.365 (8)C30—H300.9300
C13—N31.343 (10)C31—O91.228 (10)
C13—C141.383 (12)C31—O81.293 (10)
C13—H130.9300N5—O61.218 (9)
C14—C151.376 (11)N5—O51.230 (9)
C14—H140.9300N6—O101.218 (9)
C15—C161.417 (10)N6—O111.252 (9)
C15—H150.9300O7—H70.8200
N3—Ag1—N2115.0 (2)O4—C18—C19120.4 (7)
N3—Ag1—N470.7 (2)C17—C18—C19119.4 (7)
N2—Ag1—N4174.1 (2)C23—C19—C20117.9 (7)
N3—Ag1—N1130.3 (2)C23—C19—C18119.5 (7)
N2—Ag1—N171.5 (2)C20—C19—C18122.5 (7)
N4—Ag1—N1106.3 (2)C21—C20—C19120.8 (7)
N3—Ag1—O9147.53 (19)C21—C20—H20119.6
N2—Ag1—O976.74 (19)C19—C20—H20119.6
N4—Ag1—O997.64 (19)C20—C21—C22117.7 (8)
N1—Ag1—O981.75 (18)C20—C21—H21121.2
N1—C1—C2124.2 (7)C22—C21—H21121.2
N1—C1—H1117.9N4—C22—C21124.4 (8)
C2—C1—H1117.9N4—C22—H22117.8
C1—C2—C3117.6 (7)C21—C22—H22117.8
C1—C2—H2121.2N4—C23—C19120.7 (6)
C3—C2—H2121.2N4—C23—C24118.6 (6)
C2—C3—C4119.9 (7)C19—C23—C24120.6 (6)
C2—C3—H3120.0N3—C24—C16121.9 (6)
C4—C3—H3120.0N3—C24—C23117.9 (6)
C3—C4—C12119.1 (6)C16—C24—C23120.1 (6)
C3—C4—C5121.0 (7)C30—C25—C26121.4 (7)
C12—C4—C5119.9 (7)C30—C25—N5116.1 (7)
O1—C5—C6118.0 (7)C26—C25—N5122.5 (7)
O1—C5—C4120.7 (8)O7—C26—C27120.8 (7)
C6—C5—C4121.3 (9)O7—C26—C25122.2 (7)
O2—C6—C5120.3 (8)C27—C26—C25117.0 (6)
O2—C6—C7122.0 (8)C28—C27—C26122.2 (7)
C5—C6—C7117.8 (8)C28—C27—C31117.6 (7)
C11—C7—C6122.8 (7)C26—C27—C31120.2 (7)
C11—C7—C8117.1 (7)C27—C28—C29117.9 (7)
C6—C7—C8120.1 (7)C27—C28—H28121.0
C9—C8—C7119.4 (7)C29—C28—H28121.0
C9—C8—H8120.3C30—C29—C28122.3 (7)
C7—C8—H8120.3C30—C29—N6119.4 (8)
C10—C9—C8119.5 (8)C28—C29—N6118.2 (8)
C10—C9—H9120.3C29—C30—C25119.0 (7)
C8—C9—H9120.3C29—C30—H30120.5
N2—C10—C9123.6 (8)C25—C30—H30120.5
N2—C10—H10118.2O9—C31—O8123.5 (8)
C9—C10—H10118.2O9—C31—C27120.9 (8)
N2—C11—C7122.1 (6)O8—C31—C27115.5 (8)
N2—C11—C12119.3 (5)C1—N1—C12118.7 (6)
C7—C11—C12118.6 (6)C1—N1—Ag1127.8 (5)
N1—C12—C4120.6 (6)C12—N1—Ag1113.4 (4)
N1—C12—C11119.9 (6)C10—N2—C11118.3 (6)
C4—C12—C11119.5 (6)C10—N2—Ag1125.8 (5)
N3—C13—C14123.8 (8)C11—N2—Ag1115.8 (4)
N3—C13—H13118.1C13—N3—C24118.2 (6)
C14—C13—H13118.1C13—N3—Ag1124.2 (5)
C15—C14—C13118.2 (8)C24—N3—Ag1116.8 (4)
C15—C14—H14120.9C22—N4—C23118.5 (6)
C13—C14—H14120.9C22—N4—Ag1125.9 (5)
C14—C15—C16119.8 (7)C23—N4—Ag1114.5 (4)
C14—C15—H15120.1O6—N5—O5122.3 (8)
C16—C15—H15120.1O6—N5—C25119.8 (8)
C24—C16—C15118.0 (6)O5—N5—C25117.8 (8)
C24—C16—C17120.3 (6)O10—N6—O11123.8 (7)
C15—C16—C17121.7 (6)O10—N6—C29118.7 (8)
O3—C17—C18120.3 (7)O11—N6—C29117.6 (8)
O3—C17—C16120.4 (7)C26—O7—H7109.5
C18—C17—C16119.3 (6)C31—O9—Ag1105.3 (5)
O4—C18—C17120.2 (7)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O80.821.712.457 (9)151.
Table 1
Selected geometric parameters (Å)
top
Ag1—N12.400 (6)Ag1—N32.337 (6)
Ag1—N22.351 (6)Ag1—N42.377 (6)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O7—H7···O80.821.712.457 (9)151.
Acknowledgements top

The authors thank Jiangsu University for supporting this work.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SAINT, SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Che, G. B., Liu, C. B., Liu, B., Wang, Q. W. & Xu, Z. L. (2008). CrystEngComm, 10, 184–191.

Dickeson, J. E. & Sumers, L. A. (1970). Aust. J. Chem., 23, 1023–1027.

Hiort, C., Lincoln, P. & Norden, B. (1993). J. Am. Chem. Soc., 115, 3448–3454.

Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2009). Acta Cryst. E65, m1119–m1120.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Song, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399–m401.