organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o41-o42

Kallolide A acetate pyrazoline

aPO Box 70377, University of Puerto Rico, San Juan, PR 00936-0377, Puerto Rico
*Correspondence e-mail: idalizrodriguez@gmail.com

(Received 25 October 2011; accepted 1 December 2011; online 7 December 2011)

In the crystal structure of kallolide A acetate pyrazoline [systematic name: 7-methyl-16-oxo-4,10-bis­(prop-1-en-2-yl)-17,18-dioxa-14,15-diaza­tetra­cyclo­[9.4.2.16,9.01,12]octa­deca-6,8,14-trien-5-yl acetate], C23H28N2O5, there is a 12-member­ed carbon macrocyclic structure. In addition, there is a tris­ubstituted furan ring, an approximately planar γ-lactone ring [maximum deviation of 0.057 (3) Å] and a pyraz­oline ring, the latter in an envelope conformation. The pyrazoline and the γ-lactone rings are fused in a cis configuration. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming a two-dimensional network parallel to (001). An intra­molecular C—H⋯O hydrogen bond is also present.

Related literature

For information on West Indies sea plumes, see: Bayer (1961[Bayer, F. M. (1961). The Shallow-Water Octocorallia of the West Indian Region. The Hague: Martinus Nijhof.]); Lasker & Coffroth (1983[Lasker, H. R. & Coffroth, M. A. (1983). Mar. Ecol. Prog. Ser. 13, 21-28.]); Humman (1996[Humman, P. (1996). Reef Coral Identification, edited by N. Deloach, pp. 50-53. Jacksonville: New World Publications.]); Sánchez et al. (1998[Sánchez, J. A., Zea, S. & Díaz, J. M. (1998). Caribb. J. Sci. 34, 250-264.]); Williams & Vennam (2001[Williams, G. C. & Vennam, J. S. (2001). Bull. Biol. Soc. Wash. 10, 71-95.]). For complete background to the natural product chemistry of the Gorgonian genus Pseudopterogorgia, see: Marrero et al. (2010[Marrero, J., Rodríguez, I. I. & Rodríguez, A. D. (2010). Comprehensive Natural Products II, Chemistry and Biology, vol. 2, pp. 363-429.]). For species of Pseudopterogorgia, see: Yoshioka (1997[Yoshioka, P. M. (1997). J. Exp. Mar. Biol. Ecol. 214, 167-178.]); Sánchez et al. (2003[Sánchez, J. A., McFadden, C. S., France, S. C. & Lasker, H. R. (2003). Mar. Biol. 142, 975-987.]); Sánchez & Lasker (2003[Sánchez, J. A. & Lasker, H. R. (2003). Proc. R. Soc. Lond. B, 270, 2039-2044.]). For the biological activity of diterpenoids from Pseudopterogorgia, see: Heckrodt & Mulzer (2005[Heckrodt, T. J. & Mulzer, J. (2005). Top. Curr. Chem. 244, 1-41.]). For more information on the pseudoterane-type of diterpenes, see: Bundurraga & Fenical (1982[Bundurraga, M. M. & Fenical, W. (1982). J. Am. Chem. Soc. 104, 6463-6465.]); Look et al. (1985[Look, S. A., Burch, M. T., Fenical, W., Qi-tai, Z. & Clardy, J. (1985). J. Org. Chem. 50, 5741-5746.]); Williams et al. (1987b[Williams, D., Andersen, R. J., van Duyne, G. D. & Clardy, J. (1987b). J. Org. Chem. 52, 332-335.]); Rodríguez & Soto (1996[Rodríguez, A. D. & Soto, J. J. (1996). Chem. Pharm. Bull. 44, 91-94.]); Marrero et al. (2006[Marrero, J., Ospina, C. A., Rodríguez, A. D., Baran, P., Zhao, H., Franzblau, S. G. & Ortega-Barria, E. (2006). Tetrahedron, 62, 6998-7008.]). For bioactive diterpenes isolated from Pseudopterogorgia kallos, see: Marrero et al. (2003a[Marrero, J., Rodríguez, A. D., Baran, P. & Raptis, R. G. (2003a). J. Org. Chem. 68, 4977-4979.],b[Marrero, J., Rodríguez, A. D., Baran, P. & Raptis, R. G. (2003b). Org. Lett. 5, 2551-2554.], 2004a[Marrero, J., Rodríguez, A. D., Baran, P. & Raptis, R. G. (2004a). Eur. J. Org. Chem. pp. 3909-3912.],b[Marrero, J., Rodríguez, A. D., Baran, P., Raptis, R. G., Sánchez, J. A., Ortega-Barria, E. & Capson, T. L. (2004b). Org. Lett. 6, 1661-1664.], 2005[Marrero, J., Rodríguez, A. D. & Barnes, C. L. (2005). Org. Lett. 7, 1877-1880.]). For biosynthetic relationship studies between cembrane- and pseudopterane-type diterpenes, see: Rodríguez & Shi (1998[Rodríguez, A. D. & Shi, J.-G. (1998). J. Org. Chem. 63, 420-421.]); Yang et al. (2010[Yang, Z., Li, Y. & Pattenden, G. (2010). Tetrahedron, 66, 6546-6549.]); Li & Pattenden (2011[Li, Y. & Pattenden, G. (2011). Tetrahedron Lett. 52, 31150-3319.]). For information on gersolane-type diterpenes and biosynthetic relationship studies between cembrane- and gersolane-type diterpenes, see: Williams et al. (1987a[Williams, D., Andersen, R. J., Parkanyi, L. & Clardy, J. (1987a). Tetrahedron Lett. 28, 5079-5080.]); Rodríguez et al. (1998[Rodríguez, A. D., Shi, J.-G. & Huang, S. D. (1998). J. Org. Chem. 63, 4425-4432.]). For complete background to the chemistry of furan­ocembranoids, pseudopteranes, gersolanes and related compounds, see: Roethle & Trauner (2008[Roethle, P. A. & Trauner, D. (2008). Nat. Prod. Rep. 25, 298-317.]). For the synthesis of kallolide A and kallolide A acetate, see: Marshall & Liao (1998[Marshall, J. A. & Liao, J. (1998). J. Org. Chem. 63, 5962-5970.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28N2O5

  • Mr = 412.47

  • Orthorhombic, P 21 21 21

  • a = 10.593 (6) Å

  • b = 12.426 (7) Å

  • c = 17.099 (10) Å

  • V = 2251 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.992

  • 14038 measured reflections

  • 2583 independent reflections

  • 2160 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.118

  • S = 1.13

  • 2583 reflections

  • 276 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5i 0.98 2.37 3.281 (4) 154
C9—H9⋯O4ii 0.98 2.52 3.319 (4) 139
C16—H16A⋯O5 0.96 2.54 3.347 (5) 142
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, in its enantiopure form, was prepared from the known pseudopterane diterpene kallolide A acetate, which was isolated from the marine sea plume Pseudoptereogorgia kallos.

The gorgonian octocorals of the genus Pseudopterogorgia are common inhabitants of tropical West Indies (Humman, 1996) and Indo-Pacific reefs. They can be adapted to different marine reef environments, from shallow to clear deep waters. Twenty two species and subspecies of Pseudopterogorgia have been reported and are commonly known as sea plumes for the feather-like appearance of their branches and ramifications (Bayer, 1961; Marrero et al., 2010). Despite these general morphological similarities each species can be identified by differences in color, branch ramification, polyps size, texture, growth form, mucus production, sclerites, spicule, and geographical distribution (Yoshioka, 1997; Sánchez et al., 2003; Sánchez & Lasker, 2003). In the West Indies region, sea plumes from this genus are commonly found from Bermuda to the Bahamas, the Florida Keys, the Greater and Lesser Antilles, and the northern coast of South America to Brazil (Bayer, 1961; Williams & Vennam, 2001; Lasker & Coffroth, 1983; Sánchez et al., 1998). West Indies Pseudopterogorgia species are well known for the production of a variety of diterpenoids of fascinating molecular structures (Marrero et al., 2010) that exhibit a wide spectrum of biological activities including antibacterial, anti-inflammatory, antimalarial, and cytotoxic properties (Heckrodt & Mulzer, 2005). An early investigation on the chemical composition of Pseudopterogorgia kallos showed that it is a rich source of pseudopterane-type diterpenoids (Look et al., 1985). However, during the last eight years (2003–2011) subsequent chemical scrutiny has demonstrated that this gorgonian species also contains a number of minor bioactive diterpenes that are based on distinctively novel carbon frameworks (i.e., bielschowskysin, ciereszkolide, intricarene, kallosin A, and providencin) (Marrero et al., 2003a; Marrero et al., 2003b; Marrero et al., 2004a; Marrero et al., 2004b; Marrero et al., 2005).

The molecular structure of kallolide A acetate pyrazoline is shown in Fig. 1. It has a twelve carbon-membered macrocyclic structure with three additional rings: a trisubstituted furan, an approximately planar γ-lactone ring twisted on the C9—C10 bond, and a pyrazoline ring in an envelope conformation with C9 as the flap atom. Fused in a cis configuration, the angle between the mean planes of the pyrazoline and the γ-lactone rings is 111.5 (1)°.

In the crystal structure (Fig. 3), molecules are linked via C8— H8···O5 and C9— H9···O4 hydrogen bonds, forming a two-dimensional network. An additional intramolecular C16— H16A···O5 hydrogen bond is also present. The absolute structure was assigned as (1S, 2S, 7R, 8R, 9R, 10S), based on previous asymmetric synthesis of kallolide A and kallolide A acetate (Marshall & Liao,1998).

Related literature top

For information on West Indies sea plumes, see: Bayer (1961); Lasker & Coffroth (1983); Humman (1996); Sánchez et al. (1998); Williams & Vennam (2001). For complete background to the natural product chemistry of the Gorgonian genus Pseudopterogorgia, see: Marrero et al. (2010). For species of Pseudopterogorgia, see: Yoshioka (1997); Sánchez et al. (2003); Sánchez & Lasker (2003). For the biological activity of diterpenoids from Pseudopterogorgia, see: Heckrodt & Mulzer (2005). For more information on the pseudoterane-type of diterpenes, see: Bundurraga & Fenical (1982); Look et al. (1985); Williams et al. (1987b); Rodríguez & Soto (1996); Marrero et al. (2006). For bioactive diterpenes isolated from Pseudopterogorgia kallos, see: Marrero et al. (2003a,b, 2004a,b, 2005). For biosynthetic relationship studies between cembrane- and pseudopterane-type diterpenes, see: Rodríguez & Shi (1998); Yang et al. (2010); Li & Pattenden (2011). For information on gersolane-type diterpenes and biosynthetic relationship studies between cembrane- and gersolane-type diterpenes, see: Williams et al. (1987a); Rodríguez et al. (1998). For complete background to the chemistry of furanocembranoids, pseudopteranes, gersolanes and related compounds, see: Roethle & Trauner (2008). For the synthesis of kallolide A and kallolide A acetate, see: Marshall & Liao (1998).

Experimental top

Fresh specimens of the sea plume Pseudopterogorgia kallos were collected by hand using SCUBA at depths of 83–91 ft in Old Providence Island, Colombia, on March 15–16, 2002. The taxonomic identification of these gorgonian species was conducted by Dr. Juan A. Sánchez (Universidad de Los Andes, Bogotá). A voucher specimen is stored in the Chemistry Department of the University of Puerto Rico, Río Piedras Campus. The organism was partially air-dried, frozen, and lyophilized prior to its extraction. The dry specimens (1.07 kg) were blended using a mixture of CH2Cl2/MeOH (1:1) (20 x 1 L). After filtration, the crude extract was concentrated and stored under vacuum to yield a greenish gum (166 g). The crude extract was suspended in water (2 L) and extracted with n-hexane (3 x 2 L), CHCl3 (3 x 2 L), and EtOAc (2 x 2 L). Each extract was concentrated under reduced pressure to yield 71.9 g of the n-hexane extract (PkH), 39.3 g of the CHCl3 extract (PkC), and 1.47 g of the EtOAc extract (PkA). The isolation and purification of the starting material, kallolide A acetate, for the synthesis of the title compound was achieved via published procedures [Marrero et al. (2006)]. A CHCl3 solution of kallolide A acetate (15 mg) was treated with an excess of CH2N2 ether solution and stirred at room temperature. After 36 h the reaction mixture was concentrated in vacuo to remove the ether solution of CH2N2 to yield 16.7 mg of kallolide A acetate pyrazoline as a pure colorless solid (16.7 mg, 100% yield). The title compound was recrystallized by slow evaporation using hot acetone as a solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.96 (CH3), 0.97 (CH2), 0.98 (methine CH) and 0.93 (aromatic CH) Å, and constrained with Uiso(H) = 1.5 Ueq(parent) for methyl H and Uiso(H) = 1.2 Ueq(parent) for all other H atoms. In the absence of strong anomalous scattering, Friedel pairs were merged prior to final refinement.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing view along the b axis.
[Figure 3] Fig. 3. Packing view along the c axis showing the two-dimensional network formed by C—H···O intermolecular hydrogen bonding. Intramolecular C—H···O hydrogen bonds are also shown in blue.
7-methyl-16-oxo-4,10-bis(prop-1-en-2-yl)-17,18-dioxa-14,15- diazatetracyclo[9.4.2.16,9.01,12]octadeca-6,8,14-trien-5-yl acetate top
Crystal data top
C23H28N2O5F(000) = 880
Mr = 412.47Dx = 1.217 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9306 reflections
a = 10.593 (6) Åθ = 2.3–26.7°
b = 12.426 (7) ŵ = 0.09 mm1
c = 17.099 (10) ÅT = 298 K
V = 2251 (2) Å3Block, colourless
Z = 40.40 × 0.30 × 0.10 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2583 independent reflections
Radiation source: fine-focus sealed tube2160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1113
Tmin = 0.966, Tmax = 0.992k = 1515
14038 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.3145P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2583 reflectionsΔρmax = 0.35 e Å3
276 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.061 (4)
Crystal data top
C23H28N2O5V = 2251 (2) Å3
Mr = 412.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.593 (6) ŵ = 0.09 mm1
b = 12.426 (7) ÅT = 298 K
c = 17.099 (10) Å0.40 × 0.30 × 0.10 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2583 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2160 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.992Rint = 0.041
14038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.13Δρmax = 0.35 e Å3
2583 reflectionsΔρmin = 0.23 e Å3
276 parameters
Special details top

Experimental. IR(neat) νmax 3078, 2969, 2944, 2927, 1764, 1728, 1642, 1375, 1251, 1227, 907, 810 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 3.10 (1H, dd, J = 11.0, 9.0 Hz, H-2),5.60 (1H, d, J = 11.7 Hz, H-2), 6.23 (1H, s, H-5), 3.89 (1H, d, J = 2.7 Hz, H-7), 4.59 (1H, m, H-8)a, 2.11 (1H, br dd, J = 6.3, 5.7 Hz, H-9), 2.48 (1H, m, H-11a)b, 0.81 (1H, dd, J = 14.1, 5.7 Hz), 1.31 (1H,m,H-12a), 0.30 (1H, dd, J = 13.8, 13.5 Hz, H-12b), 4.88 (1H,vd, J = 1.2 Hz, H-14a), 4.51 (1H, s, H-14b), 1.77 (3H, s, H-15), 2.00 (3H, s, H-16), 5.08 (1H, d, J = 2.1 Hz, H-18a), 4.93 (1H, s, H-18b), 1.63 (3H, s, H-19), 1.94 (3H, s, H-22), 5.17 (1H, d, J = 18.6 Hz, H-23a), 5.62 (1H, dd, J = 18.9 Hz, H-23b)a (a values are interchangeable, b proton signal peak overlap with solvent). 13C NMR (DMSO-d6, 75 MHz) δ 48.4 (CH, C-1), 66.5 (CH, C-2), 146.5 (C, C-3), 122.4 (C, C4), 114.4 (CH, C-5), 152.5 (C, C-6), 46.0 (CH, C-7), 84.6 (CH, C-8), 36.7 (CH, C-9), 105.7 (C, C-10), 26.6 (CH2, C-11), 25.1 (CH2, C-12), 143.9 (C, C-13), 114.4 (CH2, C-14), 21.8 (CH3, C-15), 9.7 (CH3, C-16), 143.3 (C, C-17), 115.5 (CH2, C-18), 17.9 (CH3, C-19), 172.9 (C, C-10), 170.1 (C, C-21), 21.1 (CH3, C-22), 86.2 (CH2, C-23); LREI-MS m/z [M]+; 412(6.4), 384 (19), 370 (15), 342 (9), 231 (7), 214 (13), 178 (11), 165 (23), 164 (100), 163 (87), 135 (28); HREI-MS m/z [M]+ calcd for C23H28N2O5 412.1998 found 412.2003.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.85009 (16)0.35559 (14)0.16945 (10)0.0506 (4)
O10.59698 (18)0.25015 (14)0.22854 (11)0.0564 (5)
C30.7288 (2)0.39670 (19)0.17940 (15)0.0474 (6)
C91.0882 (3)0.4597 (2)0.24459 (17)0.0586 (7)
H91.01510.50470.23160.070*
O50.4266 (2)0.3406 (2)0.1863 (2)0.1156 (11)
O31.0951 (2)0.27160 (17)0.20733 (13)0.0696 (6)
C201.0579 (3)0.2727 (2)0.28330 (18)0.0629 (8)
C110.9562 (3)0.4146 (2)0.37422 (16)0.0629 (8)
H11A0.98130.47900.40230.076*
H11B0.95130.35680.41220.076*
O41.0311 (3)0.19117 (16)0.31793 (15)0.0867 (8)
C60.9085 (3)0.4155 (2)0.11168 (14)0.0526 (6)
C20.6586 (3)0.35346 (19)0.24830 (14)0.0486 (6)
H20.59430.40560.26450.058*
C10.7473 (3)0.3298 (2)0.31789 (14)0.0517 (6)
H10.80900.27630.30030.062*
C101.0619 (3)0.3868 (2)0.31621 (17)0.0576 (7)
N21.2578 (3)0.4666 (3)0.3389 (2)0.0925 (10)
C120.8225 (3)0.4334 (2)0.34163 (15)0.0553 (7)
H12A0.82910.47960.29610.066*
H12B0.77390.47200.38070.066*
C40.7090 (3)0.4796 (2)0.12735 (14)0.0555 (7)
C50.8259 (3)0.4905 (2)0.08522 (15)0.0620 (8)
H50.84210.54070.04620.074*
C81.1207 (3)0.3803 (3)0.17747 (19)0.0647 (8)
H81.21130.38590.16670.078*
N11.1882 (3)0.3930 (2)0.36229 (18)0.0823 (9)
C71.0488 (3)0.3979 (3)0.09993 (17)0.0652 (8)
H71.08080.46620.07920.078*
C231.2011 (3)0.5276 (3)0.2723 (2)0.0832 (10)
H23A1.26210.53650.23050.100*
H23B1.17330.59820.28940.100*
C210.4806 (3)0.2569 (3)0.19643 (19)0.0699 (8)
C130.6784 (3)0.2824 (2)0.38899 (16)0.0685 (9)
C160.5932 (4)0.5490 (3)0.1176 (2)0.0900 (12)
H16A0.52500.51940.14770.135*
H16B0.56970.55110.06340.135*
H16C0.61110.62060.13540.135*
C150.5551 (4)0.3321 (3)0.41338 (19)0.0872 (11)
H15A0.49110.31430.37580.131*
H15B0.56430.40890.41610.131*
H15C0.53120.30490.46380.131*
C220.4304 (4)0.1483 (3)0.1731 (2)0.0971 (13)
H22A0.36730.12570.20990.146*
H22B0.49820.09700.17250.146*
H22C0.39360.15280.12190.146*
C171.0837 (4)0.3138 (4)0.03873 (19)0.0848 (11)
C191.0205 (7)0.2132 (4)0.0357 (3)0.135 (2)
H19A1.04890.17360.00920.202*
H19B0.93110.22490.03190.202*
H19C1.03870.17300.08230.202*
C140.7312 (5)0.2005 (3)0.4285 (2)0.1048 (14)
H14A0.69140.17270.47250.126*
H14B0.80760.17160.41180.126*
C181.1806 (6)0.3379 (6)0.0128 (3)0.191 (3)
H18A1.20520.28780.05020.229*
H18B1.22100.40430.01000.229*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0472 (9)0.0503 (9)0.0543 (10)0.0012 (8)0.0055 (8)0.0105 (8)
O10.0550 (11)0.0550 (10)0.0590 (10)0.0065 (9)0.0097 (9)0.0015 (8)
C30.0486 (13)0.0441 (12)0.0495 (13)0.0021 (11)0.0095 (11)0.0005 (11)
C90.0533 (15)0.0518 (14)0.0706 (16)0.0075 (13)0.0157 (14)0.0067 (13)
O50.0589 (14)0.0964 (19)0.192 (3)0.0018 (14)0.0418 (19)0.001 (2)
O30.0711 (13)0.0584 (12)0.0792 (14)0.0083 (11)0.0173 (12)0.0034 (10)
C200.0616 (18)0.0524 (16)0.0748 (19)0.0048 (14)0.0254 (15)0.0057 (14)
C110.083 (2)0.0551 (16)0.0502 (14)0.0120 (15)0.0210 (14)0.0033 (13)
O40.1109 (19)0.0470 (11)0.1021 (16)0.0006 (12)0.0299 (15)0.0179 (11)
C60.0571 (15)0.0547 (14)0.0460 (13)0.0065 (13)0.0059 (12)0.0063 (12)
C20.0500 (13)0.0472 (12)0.0488 (13)0.0001 (12)0.0041 (11)0.0012 (11)
C10.0610 (15)0.0471 (13)0.0469 (13)0.0039 (12)0.0069 (12)0.0030 (11)
C100.0609 (16)0.0500 (14)0.0620 (16)0.0036 (12)0.0251 (14)0.0059 (12)
N20.078 (2)0.090 (2)0.109 (2)0.0219 (18)0.0372 (18)0.0025 (18)
C120.0708 (18)0.0495 (14)0.0457 (12)0.0050 (13)0.0063 (13)0.0004 (11)
C40.0660 (17)0.0563 (14)0.0443 (12)0.0099 (14)0.0104 (12)0.0017 (11)
C50.081 (2)0.0597 (16)0.0455 (13)0.0025 (16)0.0075 (14)0.0129 (12)
C80.0509 (15)0.0694 (18)0.0738 (19)0.0056 (14)0.0058 (14)0.0060 (15)
N10.0778 (19)0.0810 (18)0.0882 (19)0.0025 (16)0.0410 (16)0.0061 (16)
C70.0586 (17)0.0775 (19)0.0594 (16)0.0087 (15)0.0001 (13)0.0094 (15)
C230.076 (2)0.0747 (19)0.099 (2)0.0248 (19)0.024 (2)0.0073 (19)
C210.0514 (16)0.082 (2)0.0764 (19)0.0127 (16)0.0093 (15)0.0080 (17)
C130.086 (2)0.0729 (18)0.0464 (14)0.0235 (18)0.0050 (15)0.0042 (14)
C160.104 (3)0.089 (2)0.077 (2)0.043 (2)0.007 (2)0.0167 (19)
C150.094 (3)0.106 (3)0.0609 (18)0.026 (2)0.0143 (18)0.0068 (18)
C220.092 (3)0.099 (3)0.101 (3)0.040 (2)0.030 (2)0.010 (2)
C170.069 (2)0.123 (3)0.0621 (18)0.005 (2)0.0067 (17)0.0059 (19)
C190.178 (6)0.116 (4)0.110 (3)0.003 (4)0.035 (4)0.032 (3)
C140.131 (4)0.107 (3)0.076 (2)0.023 (3)0.009 (2)0.041 (2)
C180.154 (5)0.275 (8)0.143 (5)0.080 (6)0.086 (4)0.082 (5)
Geometric parameters (Å, º) top
O2—C61.383 (3)C4—C51.439 (4)
O2—C31.393 (3)C4—C161.509 (4)
O1—C211.353 (4)C5—H50.9300
O1—C21.479 (3)C8—C71.545 (4)
C3—C41.378 (4)C8—H80.9800
C3—C21.493 (4)C7—C171.524 (5)
C9—C231.539 (4)C7—H70.9800
C9—C101.549 (4)C23—H23A0.9700
C9—C81.552 (4)C23—H23B0.9700
C9—H90.9800C21—C221.505 (5)
O5—C211.200 (4)C13—C141.343 (5)
O3—C201.358 (4)C13—C151.504 (5)
O3—C81.470 (4)C16—H16A0.9600
C20—O41.207 (4)C16—H16B0.9600
C20—C101.526 (4)C16—H16C0.9600
C11—C101.535 (5)C15—H15A0.9600
C11—C121.540 (4)C15—H15B0.9600
C11—H11A0.9700C15—H15C0.9600
C11—H11B0.9700C22—H22A0.9600
C6—C51.356 (4)C22—H22B0.9600
C6—C71.516 (4)C22—H22C0.9600
C2—C11.544 (3)C17—C181.386 (6)
C2—H20.9800C17—C191.419 (6)
C1—C131.536 (4)C19—H19A0.9600
C1—C121.567 (4)C19—H19B0.9600
C1—H10.9800C19—H19C0.9600
C10—N11.555 (4)C14—H14A0.9300
N2—N11.241 (4)C14—H14B0.9300
N2—C231.493 (5)C18—H18A0.9300
C12—H12A0.9700C18—H18B0.9300
C12—H12B0.9700
C6—O2—C3107.6 (2)C7—C8—C9115.8 (2)
C21—O1—C2116.2 (2)O3—C8—H8108.2
C4—C3—O2109.6 (2)C7—C8—H8108.2
C4—C3—C2134.7 (2)C9—C8—H8108.2
O2—C3—C2115.1 (2)N2—N1—C10112.6 (3)
C23—C9—C10102.5 (2)C6—C7—C17115.3 (3)
C23—C9—C8113.8 (3)C6—C7—C8113.0 (2)
C10—C9—C8104.7 (2)C17—C7—C8111.9 (3)
C23—C9—H9111.7C6—C7—H7105.2
C10—C9—H9111.7C17—C7—H7105.2
C8—C9—H9111.7C8—C7—H7105.2
C20—O3—C8112.1 (2)N2—C23—C9105.6 (2)
O4—C20—O3122.0 (3)N2—C23—H23A110.6
O4—C20—C10127.3 (3)C9—C23—H23A110.6
O3—C20—C10110.7 (3)N2—C23—H23B110.6
C10—C11—C12118.1 (2)C9—C23—H23B110.6
C10—C11—H11A107.8H23A—C23—H23B108.8
C12—C11—H11A107.8O5—C21—O1123.1 (3)
C10—C11—H11B107.8O5—C21—C22124.9 (3)
C12—C11—H11B107.8O1—C21—C22112.0 (3)
H11A—C11—H11B107.1C14—C13—C15122.3 (3)
C5—C6—O2108.6 (2)C14—C13—C1119.4 (3)
C5—C6—C7133.5 (3)C15—C13—C1118.3 (3)
O2—C6—C7117.1 (2)C4—C16—H16A109.5
O1—C2—C3110.6 (2)C4—C16—H16B109.5
O1—C2—C1106.24 (18)H16A—C16—H16B109.5
C3—C2—C1111.9 (2)C4—C16—H16C109.5
O1—C2—H2109.3H16A—C16—H16C109.5
C3—C2—H2109.3H16B—C16—H16C109.5
C1—C2—H2109.3C13—C15—H15A109.5
C13—C1—C2113.2 (2)C13—C15—H15B109.5
C13—C1—C12110.6 (2)H15A—C15—H15B109.5
C2—C1—C12110.7 (2)C13—C15—H15C109.5
C13—C1—H1107.4H15A—C15—H15C109.5
C2—C1—H1107.4H15B—C15—H15C109.5
C12—C1—H1107.4C21—C22—H22A109.5
C20—C10—C11115.3 (3)C21—C22—H22B109.5
C20—C10—C9104.9 (2)H22A—C22—H22B109.5
C11—C10—C9120.7 (2)C21—C22—H22C109.5
C20—C10—N1104.9 (2)H22A—C22—H22C109.5
C11—C10—N1106.8 (2)H22B—C22—H22C109.5
C9—C10—N1102.5 (2)C18—C17—C19121.1 (5)
N1—N2—C23112.4 (3)C18—C17—C7117.9 (5)
C11—C12—C1115.9 (2)C19—C17—C7121.0 (3)
C11—C12—H12A108.3C17—C19—H19A109.5
C1—C12—H12A108.3C17—C19—H19B109.5
C11—C12—H12B108.3H19A—C19—H19B109.5
C1—C12—H12B108.3C17—C19—H19C109.5
H12A—C12—H12B107.4H19A—C19—H19C109.5
C3—C4—C5105.2 (2)H19B—C19—H19C109.5
C3—C4—C16128.5 (3)C13—C14—H14A120.0
C5—C4—C16126.2 (3)C13—C14—H14B120.0
C6—C5—C4108.9 (2)H14A—C14—H14B120.0
C6—C5—H5125.5C17—C18—H18A120.0
C4—C5—H5125.5C17—C18—H18B120.0
O3—C8—C7109.7 (2)H18A—C18—H18B120.0
O3—C8—C9106.6 (2)
C6—O2—C3—C41.6 (3)C2—C3—C4—C168.9 (5)
C6—O2—C3—C2170.6 (2)O2—C6—C5—C40.2 (3)
C8—O3—C20—O4179.1 (3)C7—C6—C5—C4168.9 (3)
C8—O3—C20—C103.5 (3)C3—C4—C5—C60.7 (3)
C3—O2—C6—C51.1 (3)C16—C4—C5—C6178.4 (3)
C3—O2—C6—C7170.1 (2)C20—O3—C8—C7129.1 (3)
C21—O1—C2—C387.0 (3)C20—O3—C8—C92.9 (3)
C21—O1—C2—C1151.3 (2)C23—C9—C8—O3119.0 (3)
C4—C3—C2—O1106.3 (3)C10—C9—C8—O37.9 (3)
O2—C3—C2—O184.0 (2)C23—C9—C8—C7118.6 (3)
C4—C3—C2—C1135.4 (3)C10—C9—C8—C7130.2 (3)
O2—C3—C2—C134.2 (3)C23—N2—N1—C100.7 (4)
O1—C2—C1—C1357.6 (3)C20—C10—N1—N2122.8 (3)
C3—C2—C1—C13178.4 (2)C11—C10—N1—N2114.3 (3)
O1—C2—C1—C12177.6 (2)C9—C10—N1—N213.5 (4)
C3—C2—C1—C1256.7 (3)C5—C6—C7—C1799.1 (4)
O4—C20—C10—C1139.2 (4)O2—C6—C7—C1792.5 (3)
O3—C20—C10—C11143.7 (2)C5—C6—C7—C8130.4 (3)
O4—C20—C10—C9174.4 (3)O2—C6—C7—C838.0 (4)
O3—C20—C10—C98.4 (3)O3—C8—C7—C674.9 (3)
O4—C20—C10—N178.0 (4)C9—C8—C7—C645.8 (4)
O3—C20—C10—N199.2 (3)O3—C8—C7—C1757.2 (3)
C12—C11—C10—C2074.1 (3)C9—C8—C7—C17178.0 (3)
C12—C11—C10—C953.6 (3)N1—N2—C23—C912.6 (4)
C12—C11—C10—N1169.9 (2)C10—C9—C23—N219.6 (3)
C23—C9—C10—C20128.7 (3)C8—C9—C23—N292.8 (3)
C8—C9—C10—C209.6 (3)C2—O1—C21—O52.4 (5)
C23—C9—C10—C1199.1 (3)C2—O1—C21—C22175.7 (3)
C8—C9—C10—C11141.8 (2)C2—C1—C13—C14137.6 (3)
C23—C9—C10—N119.3 (3)C12—C1—C13—C1497.6 (3)
C8—C9—C10—N199.8 (2)C2—C1—C13—C1544.3 (3)
C10—C11—C12—C176.3 (3)C12—C1—C13—C1580.6 (3)
C13—C1—C12—C1185.8 (3)C6—C7—C17—C18136.5 (5)
C2—C1—C12—C11147.9 (2)C8—C7—C17—C1892.6 (5)
O2—C3—C4—C51.4 (3)C6—C7—C17—C1944.7 (5)
C2—C3—C4—C5168.6 (3)C8—C7—C17—C1986.2 (5)
O2—C3—C4—C16178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5i0.982.373.281 (4)154
C9—H9···O4ii0.982.523.319 (4)139
C16—H16A···O50.962.543.347 (5)142
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H28N2O5
Mr412.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.593 (6), 12.426 (7), 17.099 (10)
V3)2251 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.966, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14038, 2583, 2160
Rint0.041
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.13
No. of reflections2583
No. of parameters276
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.23

Computer programs: SMART-NT (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5i0.982.373.281 (4)153.9
C9—H9···O4ii0.982.523.319 (4)139.1
C16—H16A···O50.962.543.347 (5)141.5
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

Support for this research was kindly provided by the NIH–MBRS Program and the DEGI at the University of Puerto Rico. The authors thank Dr Raphael G. Raptis for the use of the X-ray facilities and Dr Hong Zhao for her help with the data collection and initial structure refinement.

References

First citationBayer, F. M. (1961). The Shallow-Water Octocorallia of the West Indian Region. The Hague: Martinus Nijhof.
First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBundurraga, M. M. & Fenical, W. (1982). J. Am. Chem. Soc. 104, 6463–6465.
First citationHeckrodt, T. J. & Mulzer, J. (2005). Top. Curr. Chem. 244, 1–41.  CAS
First citationHumman, P. (1996). Reef Coral Identification, edited by N. Deloach, pp. 50–53. Jacksonville: New World Publications.
First citationLasker, H. R. & Coffroth, M. A. (1983). Mar. Ecol. Prog. Ser. 13, 21–28.  CrossRef Web of Science
First citationLi, Y. & Pattenden, G. (2011). Tetrahedron Lett. 52, 31150–3319.
First citationLook, S. A., Burch, M. T., Fenical, W., Qi-tai, Z. & Clardy, J. (1985). J. Org. Chem. 50, 5741–5746.  CSD CrossRef CAS Web of Science
First citationMarrero, J., Ospina, C. A., Rodríguez, A. D., Baran, P., Zhao, H., Franzblau, S. G. & Ortega-Barria, E. (2006). Tetrahedron, 62, 6998–7008.  Web of Science CSD CrossRef CAS
First citationMarrero, J., Rodríguez, A. D., Baran, P. & Raptis, R. G. (2003a). J. Org. Chem. 68, 4977–4979.  Web of Science CSD CrossRef PubMed CAS
First citationMarrero, J., Rodríguez, A. D., Baran, P. & Raptis, R. G. (2003b). Org. Lett. 5, 2551-2554.  Web of Science CSD CrossRef PubMed CAS
First citationMarrero, J., Rodríguez, A. D., Baran, P. & Raptis, R. G. (2004a). Eur. J. Org. Chem. pp. 3909–3912.  Web of Science CSD CrossRef
First citationMarrero, J., Rodríguez, A. D., Baran, P., Raptis, R. G., Sánchez, J. A., Ortega-Barria, E. & Capson, T. L. (2004b). Org. Lett. 6, 1661–1664.  Web of Science CSD CrossRef PubMed CAS
First citationMarrero, J., Rodríguez, A. D. & Barnes, C. L. (2005). Org. Lett. 7, 1877–1880.  Web of Science CSD CrossRef PubMed CAS
First citationMarrero, J., Rodríguez, I. I. & Rodríguez, A. D. (2010). Comprehensive Natural Products II, Chemistry and Biology, vol. 2, pp. 363–429.
First citationMarshall, J. A. & Liao, J. (1998). J. Org. Chem. 63, 5962–5970.  Web of Science CrossRef PubMed CAS
First citationRodríguez, A. D. & Shi, J.-G. (1998). J. Org. Chem. 63, 420–421.  PubMed
First citationRodríguez, A. D., Shi, J.-G. & Huang, S. D. (1998). J. Org. Chem. 63, 4425–4432.
First citationRodríguez, A. D. & Soto, J. J. (1996). Chem. Pharm. Bull. 44, 91–94.  PubMed Web of Science
First citationRoethle, P. A. & Trauner, D. (2008). Nat. Prod. Rep. 25, 298–317.  Web of Science CrossRef PubMed CAS
First citationSánchez, J. A. & Lasker, H. R. (2003). Proc. R. Soc. Lond. B, 270, 2039–2044.
First citationSánchez, J. A., McFadden, C. S., France, S. C. & Lasker, H. R. (2003). Mar. Biol. 142, 975–987.
First citationSánchez, J. A., Zea, S. & Díaz, J. M. (1998). Caribb. J. Sci. 34, 250–264.
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWilliams, D., Andersen, R. J., Parkanyi, L. & Clardy, J. (1987a). Tetrahedron Lett. 28, 5079–5080.  CSD CrossRef CAS Web of Science
First citationWilliams, D., Andersen, R. J., van Duyne, G. D. & Clardy, J. (1987b). J. Org. Chem. 52, 332–335.  CSD CrossRef CAS Web of Science
First citationWilliams, G. C. & Vennam, J. S. (2001). Bull. Biol. Soc. Wash. 10, 71–95.
First citationYang, Z., Li, Y. & Pattenden, G. (2010). Tetrahedron, 66, 6546–6549.  Web of Science CrossRef CAS
First citationYoshioka, P. M. (1997). J. Exp. Mar. Biol. Ecol. 214, 167–178.  CrossRef Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o41-o42
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds