supplementary materials


wn2460 scheme

Acta Cryst. (2012). E68, o105-o106    [ doi:10.1107/S160053681105269X ]

N-[3-(4-Fluorobenzyl)-2,4-dioxo-1,3-diazaspiro[4.5]dec-8-yl]-2-methylbenzenesulfonamide

S. Jeyaseelan, M. Vinduvahini, M. Madaiah, S. Bhattacharya and H. D. Revanasiddappa

Abstract top

In the title compound, C22H24FN3O4S, the cyclohexane ring adopts a chair conformation and the five-membered ring is essentially planar, with a maximum deviation of 0.040 (2) Å. The dihedral angles between the five-membered ring and the tolyl and fluorobenzene rings are 56.74 (12) and 89.88 (12)°, respectively. The two terminal benzene rings make a dihedral angle of 63.53 (12)°. The crystal structure displays intermolecular C-H...O and N-H...O hydrogen bonds. An intramolecular C-H...O hydrogen bond also occurs.

Comment top

One of the challenges of medicinal chemistry is the promotion of structural diversity,which can be achieved by the attachment of pharmacophoric groups to significant molecular scaffolds in combinatorial chemistry. An example of such a process includes di- and tri-substituted hydantoins, which have been widely used in biological screenings, resulting in numerous pharmaceutical applications (Cartwright et al., 2007; Collins, 2000; Warshakoon et al., 2006). Hydantoin analogues have shown versatile therapeutic applications and some of them have been approved as drugs. For example, fosphenytoin, as a sodium channel antagonist, is used for the treatment of epilepsy. Phenytoin has antiarrhythmic, anticonvulsant and antineuralgic activities. Ethotoin and mephenytoin both show anticonvulsant activity. Nilutamide is used in the treatment of prostate cancer (Kiselyov et al., 2006; Sakthivel & Cook, 2005; Eldrup et al., 2004; Bamford et al., 2005; Puerstinger et al., 2006).

The asymmetric unit of N-[3-(4-fluorobenzyl)-2,4-dioxo- 1,3-diazaspiro[4.5] dec-8-yl]-2-methylbenzenesulfonamide, C22H24FN3O4S, contains just one molecule (Fig. 1). The cyclohexane ring adopts a chair conformation and the five-membered ring is essentially planar, with a maximum deviation from planarity of 0.040 (2) Å, for atom C18. The dihedral angles between the five-membered ring and the (C25—C30) and (C10—C15) rings are 56.74 (12)° and 89.88 (12)°, respectively. The two terminal aromatic rings make a dihedral angle of 63.53 (12)°. The crystal structure displays intermolecular N7—H7···O4, N9—H9···O6, C12—H12···O3 and C31—H31C···O5 hydrogen bonds (Table 1); an intramolecular C31—H31A···O6 hydrogen bond is also observed. The packing of the molecules in the title structure is depicted in Fig. 2. A short contact of 2.04 Å was observed for H9···H31A.

Related literature top

For the biological activity of related compounds, see: Cartwright et al. (2007); Collins (2000); Warshakoon et al. (2006) and for their pharmaceutical activity, see: Kiselyov et al. (2006); Sakthivel & Cook (2005); Eldrup et al. (2004); Bamford et al. (2005); Puerstinger et al. (2006).

Experimental top

A mixture of tert-butyl (4-oxocyclohexyl)carbamate (2 g, 9.37 mmol) and ammonium carbonate (1.08 g, 11.2 mmol) were taken up in ethanol and water, respectively. A solution of sodium cyanide (2 g, 9.37 mmol) in water (6 ml) was added dropwise and the reaction mixture was stirred at RT for 24 hrs. A mixture of anhydrous potassium carbonate (1.28 g, 9.31 mmol) and 1-(bromomethyl)-4-fluorobenzene (1.30 g, 6.9 mmol) in DMF (20ml) was refluxed and the solid was filtered, washed with water and dried in vacuum to yield hydantoin. The tert-butyl dicarbonate (BOC) was de-protected using dioxane-HCl and rendered basic to obtain the free amine. A mixture of the product (0.2 g, 0.686 mmol), triethylamine (0.083 g, 0.82 mmol) and sulfonyl chloride (0.083 g, 0.617 mmol) in dichloromethane (10ml) was stirred at room temperature. After completion of the reaction (checked by TLC) the product was concentrated in vacuum to give the title compound (160 mg, 53%), which was recrystalized using 1:1 hexane: ethyl acetate as solvent.

Refinement top

All H atoms were placed at calculated positions and refined as riding, with N—H = 0.86 Å, C(methine)—H = 0.98 Å, C(methylene)—H = 0.97 Å , Csp2—H = 0.93 Å and C(methyl)—H = 0.96 Å. Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radius. The dashed lines indicate the intramolecular hydrogen bond.
[Figure 2] Fig. 2. A view of the crystal structure down the a axis. Dashed lines indicate hydrogen bonds.
N-[3-(4-Fluorobenzyl)-2,4-dioxo-1,3-diazaspiro[4.5]dec-8-yl]- 2-methylbenzenesulfonamide top
Crystal data top
C22H24FN3O4SF(000) = 936
Mr = 445.50Dx = 1.405 Mg m3
Monoclinic, P21/cMelting point: 425 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.8314 (3) ÅCell parameters from 3693 reflections
b = 26.3603 (11) Åθ = 2.8–25.0°
c = 13.8558 (7) ŵ = 0.20 mm1
β = 98.623 (5)°T = 293 K
V = 2105.80 (18) Å3Prism, colourless
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3693 independent reflections
Radiation source: fine-focus sealed tube3034 reflections with I > 2σ(I)
graphiteRint = 0.044
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 3131
Tmin = 0.771, Tmax = 1.000l = 1616
23208 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0528P)2 + 1.3845P]
where P = (Fo2 + 2Fc2)/3
3693 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C22H24FN3O4SV = 2105.80 (18) Å3
Mr = 445.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8314 (3) ŵ = 0.20 mm1
b = 26.3603 (11) ÅT = 293 K
c = 13.8558 (7) Å0.20 × 0.15 × 0.12 mm
β = 98.623 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3693 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
3034 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.000Rint = 0.044
23208 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.46 e Å3
S = 1.06Δρmin = 0.43 e Å3
3693 reflectionsAbsolute structure: ?
280 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Colourless solid; Yield: 98 mg, 64%; mp:425 K; IR cm-1 (KBr) 3355 (N—H), 1652, 1344 (S=O); Anal.Calcd for C22H24FN3O4S: C, 59.31; H, 5.43; N, 9.43%, Found, C, 58.75; H, 5.39; N, 9.11%.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25585 (10)0.57039 (2)0.03784 (4)0.03284 (17)
F20.6870 (4)0.79980 (6)0.74198 (16)0.0846 (6)
O30.0805 (3)0.64828 (7)0.51242 (13)0.0477 (5)
O40.4811 (3)0.53253 (6)0.61681 (12)0.0437 (4)
O50.4857 (3)0.58150 (7)0.08365 (12)0.0435 (4)
O60.2245 (3)0.53545 (6)0.04209 (12)0.0439 (4)
N70.2751 (3)0.54833 (7)0.46471 (13)0.0342 (4)
H70.32650.52390.43280.041*
N80.1988 (3)0.59465 (7)0.58837 (13)0.0320 (4)
N90.1103 (3)0.54742 (7)0.11805 (13)0.0342 (4)
H90.05780.51700.10980.041*
C100.5716 (5)0.75487 (9)0.7276 (2)0.0512 (7)
C110.6523 (5)0.71902 (10)0.6701 (2)0.0474 (6)
H110.78290.72510.64060.057*
C120.5351 (4)0.67352 (9)0.65691 (17)0.0396 (6)
H120.58810.64860.61820.048*
C130.3403 (4)0.66429 (8)0.70011 (15)0.0315 (5)
C140.2645 (4)0.70179 (9)0.75752 (17)0.0407 (6)
H140.13350.69620.78690.049*
C150.3800 (5)0.74727 (10)0.7718 (2)0.0509 (7)
H150.32890.77230.81070.061*
C160.2155 (4)0.61414 (9)0.68760 (16)0.0369 (5)
H16A0.29710.58970.73250.044*
H16B0.06060.61820.70400.044*
C170.3364 (4)0.55541 (8)0.56046 (16)0.0312 (5)
C180.1119 (3)0.58646 (8)0.41997 (15)0.0267 (4)
C190.0576 (4)0.61430 (8)0.50965 (16)0.0309 (5)
C200.1057 (4)0.56436 (9)0.36050 (17)0.0368 (5)
H20A0.21860.59120.34420.044*
H20B0.17280.53950.39980.044*
C210.0561 (4)0.53917 (9)0.26671 (16)0.0347 (5)
H21A0.04270.50980.28300.042*
H21B0.20050.52750.22940.042*
C220.0622 (4)0.57566 (8)0.20473 (15)0.0293 (5)
H220.04430.60360.18350.035*
C230.2805 (4)0.59716 (9)0.26402 (16)0.0335 (5)
H23A0.35040.62150.22480.040*
H23B0.39120.57000.28150.040*
C240.2269 (4)0.62287 (8)0.35617 (15)0.0322 (5)
H24A0.12480.65150.33840.039*
H24B0.36960.63570.39310.039*
C250.1245 (4)0.62927 (8)0.00021 (15)0.0316 (5)
C260.0956 (4)0.63160 (9)0.05589 (16)0.0350 (5)
C270.1911 (5)0.67963 (10)0.07325 (18)0.0448 (6)
H270.33850.68250.10930.054*
C280.0752 (5)0.72314 (10)0.03893 (19)0.0517 (7)
H280.14520.75460.05160.062*
C290.1422 (5)0.72009 (10)0.01356 (19)0.0523 (7)
H290.22190.74940.03570.063*
C300.2426 (5)0.67305 (9)0.03346 (17)0.0418 (6)
H300.39040.67070.06940.050*
C310.2300 (4)0.58652 (10)0.0997 (2)0.0476 (6)
H31A0.14330.55610.08170.071*
H31B0.25650.58970.16950.071*
H31C0.37610.58490.07590.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0350 (3)0.0353 (3)0.0273 (3)0.0006 (2)0.0020 (2)0.0056 (2)
F20.0989 (15)0.0430 (9)0.1017 (15)0.0217 (9)0.0184 (12)0.0032 (10)
O30.0504 (10)0.0498 (10)0.0435 (10)0.0222 (9)0.0094 (8)0.0031 (8)
O40.0563 (11)0.0373 (9)0.0333 (9)0.0142 (8)0.0068 (8)0.0005 (7)
O50.0328 (9)0.0554 (10)0.0404 (9)0.0026 (8)0.0009 (7)0.0069 (8)
O60.0513 (10)0.0443 (10)0.0363 (9)0.0004 (8)0.0074 (8)0.0140 (8)
N70.0474 (12)0.0268 (9)0.0269 (9)0.0127 (8)0.0007 (8)0.0041 (8)
N80.0391 (11)0.0300 (9)0.0267 (9)0.0038 (8)0.0045 (8)0.0027 (8)
N90.0451 (11)0.0272 (9)0.0289 (10)0.0047 (8)0.0013 (8)0.0027 (8)
C100.0607 (18)0.0321 (13)0.0532 (16)0.0021 (12)0.0164 (14)0.0063 (12)
C110.0402 (14)0.0541 (16)0.0460 (15)0.0047 (12)0.0002 (11)0.0069 (13)
C120.0404 (13)0.0448 (14)0.0347 (12)0.0041 (11)0.0091 (10)0.0055 (11)
C130.0348 (12)0.0347 (12)0.0240 (10)0.0071 (9)0.0014 (9)0.0026 (9)
C140.0397 (13)0.0448 (14)0.0371 (13)0.0119 (11)0.0043 (11)0.0068 (11)
C150.0618 (18)0.0360 (14)0.0508 (16)0.0161 (12)0.0048 (14)0.0124 (12)
C160.0459 (14)0.0399 (13)0.0261 (11)0.0004 (10)0.0094 (10)0.0034 (10)
C170.0399 (13)0.0227 (10)0.0300 (11)0.0024 (9)0.0020 (10)0.0003 (9)
C180.0282 (11)0.0240 (10)0.0272 (11)0.0029 (8)0.0016 (9)0.0003 (9)
C190.0320 (12)0.0296 (11)0.0317 (12)0.0002 (9)0.0067 (9)0.0000 (9)
C200.0323 (12)0.0442 (13)0.0343 (12)0.0093 (10)0.0059 (10)0.0010 (10)
C210.0322 (12)0.0368 (12)0.0333 (12)0.0101 (10)0.0011 (9)0.0042 (10)
C220.0329 (12)0.0281 (11)0.0248 (11)0.0012 (9)0.0023 (9)0.0020 (9)
C230.0356 (12)0.0358 (12)0.0292 (11)0.0105 (10)0.0047 (9)0.0024 (10)
C240.0386 (12)0.0277 (11)0.0296 (11)0.0071 (9)0.0022 (10)0.0020 (9)
C250.0395 (13)0.0344 (12)0.0214 (10)0.0026 (10)0.0064 (9)0.0016 (9)
C260.0389 (13)0.0413 (13)0.0249 (11)0.0021 (10)0.0054 (10)0.0034 (10)
C270.0470 (15)0.0514 (15)0.0348 (13)0.0073 (12)0.0018 (11)0.0068 (12)
C280.077 (2)0.0395 (14)0.0373 (14)0.0141 (14)0.0059 (14)0.0038 (12)
C290.080 (2)0.0354 (14)0.0393 (14)0.0076 (13)0.0014 (14)0.0058 (11)
C300.0506 (15)0.0419 (14)0.0307 (12)0.0073 (11)0.0008 (11)0.0038 (11)
C310.0400 (14)0.0532 (15)0.0462 (15)0.0072 (12)0.0047 (11)0.0029 (12)
Geometric parameters (Å, °) top
S1—O51.4248 (17)C18—C201.522 (3)
S1—O61.4310 (16)C18—C241.526 (3)
S1—N91.6141 (19)C20—C211.525 (3)
S1—C251.774 (2)C20—H20A0.9700
F2—C101.362 (3)C20—H20B0.9700
O3—C191.209 (3)C21—C221.522 (3)
O4—C171.219 (3)C21—H21A0.9700
N7—C171.334 (3)C21—H21B0.9700
N7—C181.457 (3)C22—C231.518 (3)
N7—H70.8600C22—H220.9800
N8—C191.366 (3)C23—C241.519 (3)
N8—C171.399 (3)C23—H23A0.9700
N8—C161.457 (3)C23—H23B0.9700
N9—C221.475 (3)C24—H24A0.9700
N9—H90.8600C24—H24B0.9700
C10—C111.364 (4)C25—C301.387 (3)
C10—C151.367 (4)C25—C261.399 (3)
C11—C121.379 (4)C26—C271.390 (3)
C11—H110.9300C26—C311.501 (3)
C12—C131.383 (3)C27—C281.379 (4)
C12—H120.9300C27—H270.9300
C13—C141.382 (3)C28—C291.366 (4)
C13—C161.507 (3)C28—H280.9300
C14—C151.375 (4)C29—C301.381 (4)
C14—H140.9300C29—H290.9300
C15—H150.9300C30—H300.9300
C16—H16A0.9700C31—H31A0.9600
C16—H16B0.9700C31—H31B0.9600
C18—C191.517 (3)C31—H31C0.9600
O5—S1—O6118.65 (10)C21—C20—H20A109.2
O5—S1—N9109.09 (10)C18—C20—H20B109.2
O6—S1—N9105.79 (10)C21—C20—H20B109.2
O5—S1—C25106.68 (11)H20A—C20—H20B107.9
O6—S1—C25109.65 (10)C22—C21—C20111.44 (18)
N9—S1—C25106.39 (10)C22—C21—H21A109.3
C17—N7—C18112.76 (17)C20—C21—H21A109.3
C17—N7—H7123.6C22—C21—H21B109.3
C18—N7—H7123.6C20—C21—H21B109.3
C19—N8—C17111.21 (18)H21A—C21—H21B108.0
C19—N8—C16124.50 (18)N9—C22—C23112.51 (18)
C17—N8—C16124.18 (18)N9—C22—C21107.33 (17)
C22—N9—S1123.70 (15)C23—C22—C21110.18 (17)
C22—N9—H9118.1N9—C22—H22108.9
S1—N9—H9118.1C23—C22—H22108.9
F2—C10—C11118.8 (3)C21—C22—H22108.9
F2—C10—C15118.7 (3)C22—C23—C24111.09 (18)
C11—C10—C15122.5 (2)C22—C23—H23A109.4
C10—C11—C12118.2 (3)C24—C23—H23A109.4
C10—C11—H11120.9C22—C23—H23B109.4
C12—C11—H11120.9C24—C23—H23B109.4
C11—C12—C13121.2 (2)H23A—C23—H23B108.0
C11—C12—H12119.4C23—C24—C18111.72 (17)
C13—C12—H12119.4C23—C24—H24A109.3
C14—C13—C12118.5 (2)C18—C24—H24A109.3
C14—C13—C16120.2 (2)C23—C24—H24B109.3
C12—C13—C16121.2 (2)C18—C24—H24B109.3
C15—C14—C13121.0 (2)H24A—C24—H24B107.9
C15—C14—H14119.5C30—C25—C26121.1 (2)
C13—C14—H14119.5C30—C25—S1117.35 (18)
C10—C15—C14118.6 (2)C26—C25—S1121.43 (17)
C10—C15—H15120.7C27—C26—C25116.5 (2)
C14—C15—H15120.7C27—C26—C31118.7 (2)
N8—C16—C13112.37 (18)C25—C26—C31124.7 (2)
N8—C16—H16A109.1C28—C27—C26122.3 (2)
C13—C16—H16A109.1C28—C27—H27118.8
N8—C16—H16B109.1C26—C27—H27118.8
C13—C16—H16B109.1C29—C28—C27120.2 (2)
H16A—C16—H16B107.9C29—C28—H28119.9
O4—C17—N7128.6 (2)C27—C28—H28119.9
O4—C17—N8124.0 (2)C28—C29—C30119.4 (2)
N7—C17—N8107.40 (18)C28—C29—H29120.3
N7—C18—C19100.86 (16)C30—C29—H29120.3
N7—C18—C20113.88 (18)C29—C30—C25120.4 (2)
C19—C18—C20111.67 (17)C29—C30—H30119.8
N7—C18—C24111.37 (18)C25—C30—H30119.8
C19—C18—C24109.52 (17)C26—C31—H31A109.5
C20—C18—C24109.28 (17)C26—C31—H31B109.5
O3—C19—N8125.5 (2)H31A—C31—H31B109.5
O3—C19—C18127.3 (2)C26—C31—H31C109.5
N8—C19—C18107.20 (17)H31A—C31—H31C109.5
C18—C20—C21112.24 (18)H31B—C31—H31C109.5
C18—C20—H20A109.2
O5—S1—N9—C2262.17 (19)C20—C18—C19—N8126.81 (19)
O6—S1—N9—C22169.14 (16)C24—C18—C19—N8112.00 (19)
C25—S1—N9—C2252.56 (19)N7—C18—C20—C2170.2 (2)
F2—C10—C11—C12179.4 (2)C19—C18—C20—C21176.36 (18)
C15—C10—C11—C120.2 (4)C24—C18—C20—C2155.0 (2)
C10—C11—C12—C130.3 (4)C18—C20—C21—C2255.6 (3)
C11—C12—C13—C140.2 (4)S1—N9—C22—C2352.8 (2)
C11—C12—C13—C16178.6 (2)S1—N9—C22—C21174.14 (15)
C12—C13—C14—C150.1 (3)C20—C21—C22—N9178.00 (17)
C16—C13—C14—C15178.3 (2)C20—C21—C22—C2355.2 (2)
F2—C10—C15—C14179.7 (2)N9—C22—C23—C24176.14 (17)
C11—C10—C15—C140.1 (4)C21—C22—C23—C2456.4 (2)
C13—C14—C15—C100.3 (4)C22—C23—C24—C1857.9 (2)
C19—N8—C16—C1372.2 (3)N7—C18—C24—C2370.5 (2)
C17—N8—C16—C13103.6 (2)C19—C18—C24—C23178.80 (18)
C14—C13—C16—N8141.1 (2)C20—C18—C24—C2356.2 (2)
C12—C13—C16—N840.5 (3)O5—S1—C25—C3010.0 (2)
C18—N7—C17—O4174.2 (2)O6—S1—C25—C30139.68 (18)
C18—N7—C17—N87.0 (3)N9—S1—C25—C30106.36 (19)
C19—N8—C17—O4178.1 (2)O5—S1—C25—C26173.77 (18)
C16—N8—C17—O41.9 (3)O6—S1—C25—C2644.1 (2)
C19—N8—C17—N73.0 (3)N9—S1—C25—C2669.9 (2)
C16—N8—C17—N7179.2 (2)C30—C25—C26—C272.1 (3)
C17—N7—C18—C197.7 (2)S1—C25—C26—C27173.96 (18)
C17—N7—C18—C20127.5 (2)C30—C25—C26—C31176.3 (2)
C17—N7—C18—C24108.4 (2)S1—C25—C26—C317.6 (3)
C17—N8—C19—O3179.4 (2)C25—C26—C27—C281.1 (4)
C16—N8—C19—O34.3 (4)C31—C26—C27—C28177.4 (2)
C17—N8—C19—C181.9 (2)C26—C27—C28—C290.5 (4)
C16—N8—C19—C18174.32 (19)C27—C28—C29—C301.2 (4)
N7—C18—C19—O3175.9 (2)C28—C29—C30—C250.3 (4)
C20—C18—C19—O354.6 (3)C26—C25—C30—C291.5 (4)
C24—C18—C19—O366.6 (3)S1—C25—C30—C29174.8 (2)
N7—C18—C19—N85.5 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O4i0.862.042.885 (2)166.
N9—H9···O6ii0.862.243.013 (2)149.
C12—H12···O3iii0.932.593.290 (3)132.
C31—H31A···O60.962.202.973 (3)137.
C31—H31C···O5iv0.962.473.238 (3)137.
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) x+1, y, z; (iv) x−1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N7—H7···O4i0.862.042.885 (2)166.
N9—H9···O6ii0.862.243.013 (2)149.
C12—H12···O3iii0.932.593.290 (3)132.
C31—H31A···O60.962.202.973 (3)137.
C31—H31C···O5iv0.962.473.238 (3)137.
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) x+1, y, z; (iv) x−1, y, z.
Acknowledgements top

The authors thank Dr Binoy Krishna Saha, Department of Chemistry, Pondicherry University, for the data collection and Dr H. C. Devarajegowda, Department of Physics, Yuvaraja's Collage, University of Mysore, for his help and encouragement.

references
References top

Bamford, M. J., et al. (2005). Bioorg. Med. Chem. Lett. 15, 3402–3406.

Cartwright, M. W., Sandford, G., Bousbaa, J., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2007). Tetrahedron, 63, 7027–7035.

Collins, I. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2845–2861.

Eldrup, A. B., Prhavc, M., Brooks, J., Bhat, B., Prakash, T. P., Song, Q., Bera, S., Bhat, N., Dande, P., Cook, P. D., Bennett, C. F., Carroll, S. S., Ball, R. G., Bosserman, M., Burlein, C., et al. (2004). J. Med. Chem. 47, 5284–5297.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Kiselyov, A. S., Semenova, M., Semenov, V. V. & Piatnitski, E. (2006). Bioorg. Med. Chem. Lett. 16, 1726–1730.

Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.

Puerstinger, G., Paeshuyse, J., Herdewijn, P., Rozenski, J., Clercq, D. & Neyts, J. (2006). Bioorg. Med. Chem. Lett. 16, 5345–5349.

Sakthivel, K. & Cook, P. D. (2005). Tetrahedron Lett. 46, 3883–3887.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Warshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Sheville, J., Renock, S., Xu, K., Pokross, M., Evdokimov, A. G., Walter, R. & Mekel, M. (2006). Bioorg. Med. Chem. Lett. 16, 5598–5601.

Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.