supplementary materials


xu5365 scheme

Acta Cryst. (2012). E68, o16    [ doi:10.1107/S160053681104760X ]

1-Hydroxy-11H-benzo[b]fluoren-11-one

K.-Y. Chen, M.-J. Chang and T.-C. Fang

Abstract top

The title compound, C17H10O2, is nearly planar, the maximum atomic deviation being 0.053 (2) Å. In the molecule, an intramolecular O-H...O hydrogen bond generates an S(6) ring motif. In the crystal, inversion-related molecules are linked by pairs of weak C-H...O hydrogen bonds, forming dimers. [pi]-[pi] stacking is observed in the crystal structure, the closest centroid-centroid distance being 3.7846 (16) Å.

Comment top

The excited-state intramolecular proton transfer (ESIPT) reaction of 7-hydroxy-1-indanone and its derivatives has been investigated for past years (Aquino et al., 2005; Tang et al., 2011), which incorporates transfer of a hydroxy proton to the carbonyl oxygen through a intramolecular six-membered-ring hydrogen-bonding system. The unusual photophysical property of the resulting proton-transfer tautomer has found many important applications (Chen et al., 2009, 2010; Lim et al., 2011; Ito et al., 2011; Han et al., 2010; Jung et al., 2009).

The molecular structure of the title compound (HBO) comprises a 7-hydroxy-1-indanone unit having a naphthalene ring fused on one side (Figure 1). The molecule is nearly planar, which is consistent with previous studies (Chen et al., 2011a; Li et al., 2007; Saeed et al., 2007). HBO possesses an intramolecular O—H···O hydrogen bond (Table 1), which generates an S(6) ring motif (Chen et al., 2011b). In the crystal (Figure 2), inversion-related molceules are linked by a pair of weak C—H···O hydrogen bonds (Table 1), forming a cyclic dimers with R22(10) graph-set motif (Bernstein et al., 1995). ππ stacking is observed between the tetracyclic plane and its adjacent one, the closest centroid-centroid distance being 3.7846 (16) Å [symmetry code: 1 - x, -y, 1 - z].

Related literature top

For the spectroscopy and preparation of the title compound, see: Aquino et al. (2005); Tang et al. (2011). For applications of proton-transfer dyes, see: Chen & Pang (2009, 2010); Chuang et al. (2011); Han et al. (2010); Ito et al. (2011); Jung et al. (2009); Lim et al. (2011). For related structures, see: Chen et al. (2011a,b); Li et al. (2007); Saeed & Bolte (2007). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the literature (Tang et al., 2011). Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of six weeks by slow evaporation from the chloroform solution.

Refinement top

Hydroxy H atom was located in a Fourier map and refined isotropically. Other H atoms ware placed geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed down the b axis. Green dashed lines denote the intermolecular C—H···O hydrogen bonds.
1-Hydroxy-11H-benzo[b]fluoren-11-one top
Crystal data top
C17H10O2F(000) = 512
Mr = 246.25Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 1918 reflections
a = 12.474 (2) Åθ = 2.7–24.7°
b = 6.4401 (12) ŵ = 0.09 mm1
c = 15.601 (3) ÅT = 297 K
β = 109.188 (3)°Parallelepiped, yellow
V = 1183.6 (4) Å30.42 × 0.22 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.087
graphiteθmax = 26.0°, θmin = 1.7°
φ and ω scansh = 1415
6331 measured reflectionsk = 77
2310 independent reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.2285P]
where P = (Fo2 + 2Fc2)/3
2310 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H10O2V = 1183.6 (4) Å3
Mr = 246.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.474 (2) ŵ = 0.09 mm1
b = 6.4401 (12) ÅT = 297 K
c = 15.601 (3) Å0.42 × 0.22 × 0.12 mm
β = 109.188 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1322 reflections with I > 2σ(I)
6331 measured reflectionsRint = 0.087
2310 independent reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153Δρmax = 0.19 e Å3
S = 1.03Δρmin = 0.16 e Å3
2310 reflectionsAbsolute structure: ?
176 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66186 (16)0.4250 (3)0.11797 (12)0.0730 (6)
O20.88146 (17)0.3141 (4)0.24218 (14)0.0836 (6)
H2A0.816 (3)0.412 (6)0.194 (3)0.147 (15)*
C10.6346 (2)0.2548 (4)0.14017 (15)0.0515 (6)
C20.52192 (19)0.1511 (3)0.10894 (14)0.0466 (6)
C30.4220 (2)0.2150 (4)0.04737 (15)0.0527 (6)
H3A0.41710.34290.01870.063*
C40.3259 (2)0.0847 (4)0.02760 (14)0.0505 (6)
C50.2190 (2)0.1414 (5)0.03430 (16)0.0656 (7)
H5A0.21110.26880.06380.079*
C60.1281 (2)0.0144 (6)0.05160 (18)0.0764 (9)
H6A0.05870.05490.09280.092*
C70.1378 (2)0.1778 (6)0.00777 (19)0.0774 (9)
H7A0.07470.26370.01950.093*
C80.2396 (2)0.2395 (4)0.05214 (17)0.0655 (7)
H8A0.24520.36820.08030.079*
C90.33640 (19)0.1115 (4)0.07200 (14)0.0516 (6)
C100.4427 (2)0.1731 (4)0.13508 (15)0.0538 (6)
H10A0.44970.30150.16370.065*
C110.53325 (19)0.0456 (3)0.15340 (14)0.0478 (6)
C120.65335 (19)0.0694 (4)0.21356 (13)0.0485 (6)
C130.7106 (2)0.2252 (4)0.26996 (16)0.0631 (7)
H13A0.67330.34510.27780.076*
C140.8266 (2)0.1985 (5)0.31532 (18)0.0714 (8)
H14A0.86640.30390.35330.086*
C150.8842 (2)0.0228 (5)0.30603 (18)0.0714 (8)
H15A0.96170.01150.33660.086*
C160.8262 (2)0.1378 (4)0.25083 (16)0.0602 (7)
C170.71100 (19)0.1116 (4)0.20486 (14)0.0490 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0818 (13)0.0622 (12)0.0679 (12)0.0176 (10)0.0151 (10)0.0086 (9)
O20.0615 (12)0.1010 (16)0.0844 (14)0.0228 (12)0.0186 (10)0.0023 (12)
C10.0613 (15)0.0508 (14)0.0419 (12)0.0043 (12)0.0163 (11)0.0011 (10)
C20.0527 (14)0.0471 (13)0.0392 (11)0.0003 (11)0.0140 (10)0.0014 (10)
C30.0620 (15)0.0513 (14)0.0431 (12)0.0013 (12)0.0151 (11)0.0029 (10)
C40.0537 (14)0.0595 (15)0.0379 (11)0.0019 (11)0.0146 (10)0.0028 (10)
C50.0568 (16)0.0860 (19)0.0495 (14)0.0037 (15)0.0114 (12)0.0012 (13)
C60.0502 (16)0.116 (3)0.0570 (16)0.0029 (17)0.0098 (13)0.0123 (17)
C70.0581 (18)0.108 (3)0.0659 (18)0.0236 (17)0.0205 (14)0.0195 (18)
C80.0675 (18)0.0757 (18)0.0571 (15)0.0177 (14)0.0256 (14)0.0093 (13)
C90.0511 (14)0.0645 (16)0.0410 (12)0.0086 (12)0.0174 (11)0.0086 (11)
C100.0636 (16)0.0537 (14)0.0463 (13)0.0024 (13)0.0211 (11)0.0014 (11)
C110.0539 (14)0.0511 (14)0.0402 (12)0.0016 (11)0.0177 (10)0.0006 (10)
C120.0541 (14)0.0552 (14)0.0371 (11)0.0062 (11)0.0161 (10)0.0012 (10)
C130.0717 (19)0.0627 (16)0.0529 (14)0.0096 (14)0.0176 (13)0.0059 (12)
C140.0688 (19)0.080 (2)0.0587 (16)0.0256 (16)0.0121 (14)0.0024 (14)
C150.0489 (15)0.101 (2)0.0588 (16)0.0135 (16)0.0096 (12)0.0049 (16)
C160.0574 (16)0.0745 (18)0.0506 (14)0.0049 (14)0.0202 (12)0.0085 (13)
C170.0492 (14)0.0589 (15)0.0384 (11)0.0019 (11)0.0137 (10)0.0009 (10)
Geometric parameters (Å, °) top
O1—C11.231 (3)C7—H7A0.9300
O2—C161.358 (3)C8—C91.409 (3)
O2—H2A1.11 (4)C8—H8A0.9300
C1—C171.465 (3)C9—C101.423 (3)
C1—C21.486 (3)C10—C111.349 (3)
C2—C31.364 (3)C10—H10A0.9300
C2—C111.429 (3)C11—C121.492 (3)
C3—C41.412 (3)C12—C131.370 (3)
C3—H3A0.9300C12—C171.400 (3)
C4—C51.413 (3)C13—C141.397 (4)
C4—C91.426 (3)C13—H13A0.9300
C5—C61.352 (4)C14—C151.374 (4)
C5—H5A0.9300C14—H14A0.9300
C6—C71.399 (4)C15—C161.387 (4)
C6—H6A0.9300C15—H15A0.9300
C7—C81.365 (4)C16—C171.390 (3)
C16—O2—H2A105 (2)C10—C9—C4119.9 (2)
O1—C1—C17125.3 (2)C8—C9—C4118.4 (2)
O1—C1—C2128.8 (2)C11—C10—C9120.1 (2)
C17—C1—C2105.9 (2)C11—C10—H10A119.9
C3—C2—C11122.1 (2)C9—C10—H10A119.9
C3—C2—C1130.0 (2)C10—C11—C2119.6 (2)
C11—C2—C1107.90 (19)C10—C11—C12132.0 (2)
C2—C3—C4119.3 (2)C2—C11—C12108.37 (19)
C2—C3—H3A120.4C13—C12—C17119.8 (2)
C4—C3—H3A120.4C13—C12—C11133.1 (2)
C3—C4—C5122.5 (2)C17—C12—C11107.16 (19)
C3—C4—C9119.0 (2)C12—C13—C14118.0 (3)
C5—C4—C9118.5 (2)C12—C13—H13A121.0
C6—C5—C4121.4 (3)C14—C13—H13A121.0
C6—C5—H5A119.3C15—C14—C13122.6 (3)
C4—C5—H5A119.3C15—C14—H14A118.7
C5—C6—C7120.3 (3)C13—C14—H14A118.7
C5—C6—H6A119.8C14—C15—C16119.7 (2)
C7—C6—H6A119.8C14—C15—H15A120.2
C8—C7—C6120.3 (3)C16—C15—H15A120.2
C8—C7—H7A119.9O2—C16—C17121.5 (2)
C6—C7—H7A119.9O2—C16—C15120.5 (2)
C7—C8—C9121.1 (3)C17—C16—C15118.0 (3)
C7—C8—H8A119.4C16—C17—C12121.9 (2)
C9—C8—H8A119.4C16—C17—C1127.4 (2)
C10—C9—C8121.7 (2)C12—C17—C1110.7 (2)
O1—C1—C2—C31.4 (4)C3—C2—C11—C12178.2 (2)
C17—C1—C2—C3178.4 (2)C1—C2—C11—C120.1 (2)
O1—C1—C2—C11179.3 (2)C10—C11—C12—C130.7 (4)
C17—C1—C2—C110.5 (2)C2—C11—C12—C13179.2 (2)
C11—C2—C3—C41.0 (3)C10—C11—C12—C17179.0 (2)
C1—C2—C3—C4178.6 (2)C2—C11—C12—C170.5 (2)
C2—C3—C4—C5179.0 (2)C17—C12—C13—C141.7 (3)
C2—C3—C4—C90.7 (3)C11—C12—C13—C14178.0 (2)
C3—C4—C5—C6179.5 (2)C12—C13—C14—C150.6 (4)
C9—C4—C5—C60.1 (3)C13—C14—C15—C161.0 (4)
C4—C5—C6—C70.3 (4)C14—C15—C16—O2178.8 (2)
C5—C6—C7—C80.7 (4)C14—C15—C16—C171.5 (4)
C6—C7—C8—C90.7 (4)O2—C16—C17—C12179.8 (2)
C7—C8—C9—C10179.3 (2)C15—C16—C17—C120.5 (3)
C7—C8—C9—C40.3 (4)O2—C16—C17—C12.8 (4)
C3—C4—C9—C100.0 (3)C15—C16—C17—C1176.9 (2)
C5—C4—C9—C10179.7 (2)C13—C12—C17—C161.2 (3)
C3—C4—C9—C8179.6 (2)C11—C12—C17—C16178.5 (2)
C5—C4—C9—C80.1 (3)C13—C12—C17—C1178.9 (2)
C8—C9—C10—C11179.1 (2)C11—C12—C17—C10.8 (2)
C4—C9—C10—C110.4 (3)O1—C1—C17—C161.4 (4)
C9—C10—C11—C20.2 (3)C2—C1—C17—C16178.4 (2)
C9—C10—C11—C12178.5 (2)O1—C1—C17—C12179.0 (2)
C3—C2—C11—C100.6 (3)C2—C1—C17—C120.8 (2)
C1—C2—C11—C10178.7 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.11 (4)1.90 (4)2.877 (3)145 (3)
C3—H3A···O1i0.932.523.369 (3)151
Symmetry codes: (i) −x+1, −y−1, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.11 (4)1.90 (4)2.877 (3)145 (3)
C3—H3A···O1i0.932.523.369 (3)151
Symmetry codes: (i) −x+1, −y−1, −z.
Acknowledgements top

This work was supported by the National Science Council (NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.

references
References top

Aquino, A. J. A., Lischka, H. & Hättig, C. (2005). J. Phys. Chem. A, 109, 3201–3208.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.

Chen, W.-H. & Pang, Y. (2009). Tetrahedron Lett. 50, 6680–6683.

Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918.

Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.

Chuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189–8202.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Han, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947–1951.

Ito, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigments, 89, 319–323.

Jung, H. Y., Kim, H. J., Vicens, J. & Kim, J. S. (2009). Tetrahedron Lett. 50, 983–987.

Li, Z., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o3435.

Lim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigments, 90, 284–289.

Saeed, A. & Bolte, M. (2007). Acta Cryst. E63, o2757.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.