supplementary materials


xu5401 scheme

Acta Cryst. (2012). E68, m61    [ doi:10.1107/S160053681105330X ]

Aquacyanido{6,6'-dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethanylylidene)]diphenolato}cobalt(III) acetonitrile hemisolvate

Y. Lin, G.-F. Hou, G.-M. Li and P.-F. Yan

Abstract top

In the title complex, [Co(C22H18N2O4)(CN)(H2O)]·0.5CH3CN, the CoIII cation is N,N',O,O'-chelated by a 6,6'-dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethanylylidene)]diphenolate dianion, and is further coordinated by a cyanide anion and a water molecule in the axial sites, completing a distorted octahedral coordination geometry. In the crystal, pairs of bifurcated O-H...(O,O) hydrogen bonds link adjacent molecules, forming centrosymmetric dimers. The acetonitrile solvent molecule shows 0.5 occupancy.

Comment top

Transition metal complexes with spectroscopic and magnetic properties are currently of considerable interest. In continuation of the studies of salen type transition metal complexes, we present here the synthesis and the crystal structure of the title compound. The similar structure has been reported by us, both of which are unexpected products (Lin et al., 2011).

The bond-valence calculation (Spek, 2009) indicate that the cobalt is in +3 states, which should be produced by LiTCNQ oxidating Co(II) atom [TCNQ = 2,2'-(2,5-cyclohexadiene-1,4-diylidene)bis-propanedinitrile], meanwhile, the TCNQ decompose to produce cyandio group. The Co(III) ion is six-coordinated by two imino nitrogen atoms and one nitrogen atom from the decomposition of LiTCNQ and two phenolate oxygen atoms from the ligand and one oxygen from the hydrate group (Fig. 1). The Co—N bond distances range from 1.886 (3) Å to 1.890 (2) Å and the Co—O bond distances range from 1.884 (2) Å to 2.031 (2) Å, in accordance with the reported values. The axially coordinated hydrate oxygen atoms form H-bonding with four oxygen atoms of the adjacent ligand constructing dimer (Table 1). One acetonitrile molecule is co-crystallized with the dimer.

Related literature top

For the synthesis, see: Costes et al. (2000). For related complexes with a similar ligand, see: Lin et al. (2011). For bond-valence calculations, see: Spek (2009).

Experimental top

A solution of CoL (0.008 g, 0.01 mmol) (L = N,N'-bis(2-oxy-3-methoxybenzylidene)-1,2-diaminobenzene) (Costes et al., 2000) in 30 ml of CH3CN was added dropwise to a solution of LiTCNQ (0.006 g, 0.03 mmol) [TCNQ = 2,2'-(2,5-cyclohexadiene-1,4-diylidene)bis-propanedinitrile] in 20 mL of H2O solution. The reaction was carried out under oxygen-free nitrogen, using standard Schlenk techniques and degassed solvents. Red-brown single crystals suitable for X-ray determination were obtained in seven days. Elemental Anal. Calc. for C48H43N7O10Co2: C, 58.72; H, 4.41; N, 8.56 wt%, Found: C, 58.66; H, 4.50; N, 8.59 wt%.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and O—H = 0.85 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C,O) for methyl and water H atoms, and 1.2Ueq(C) for aromatic H atoms. The disordered acetonitrile solvatete molecule is treated with 50% occupancy, and the bonds of which is restricted by a series of commonds: dfix 1.15 0.001 n4 c24, dfix 1.47 0.001 c24 c25, and dfix 2.62 0.001 n4 c25 to keep the linear configuration.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Aquacyanido{6,6'-dimethoxy-2,2'-[1,2- phenylenebis(nitrilomethanylylidene)]diphenolato}cobalt(III) acetonitrile hemisolvate top
Crystal data top
[Co(C22H18N2O4)(CN)(H2O)]·0.5C2H3NZ = 2
Mr = 497.95F(000) = 514
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6487 (17) ÅCell parameters from 8343 reflections
b = 11.689 (2) Åθ = 3.2–27.5°
c = 12.229 (2) ŵ = 0.83 mm1
α = 112.10 (3)°T = 293 K
β = 102.30 (3)°Block, red-brown
γ = 97.85 (3)°0.23 × 0.21 × 0.16 mm
V = 1086.6 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4911 independent reflections
Radiation source: fine-focus sealed tube3570 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.831, Tmax = 0.878k = 1515
10646 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1004P)2]
where P = (Fo2 + 2Fc2)/3
4911 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.52 e Å3
16 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Co(C22H18N2O4)(CN)(H2O)]·0.5C2H3Nγ = 97.85 (3)°
Mr = 497.95V = 1086.6 (5) Å3
Triclinic, P1Z = 2
a = 8.6487 (17) ÅMo Kα radiation
b = 11.689 (2) ŵ = 0.83 mm1
c = 12.229 (2) ÅT = 293 K
α = 112.10 (3)°0.23 × 0.21 × 0.16 mm
β = 102.30 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4911 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3570 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.878Rint = 0.030
10646 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.158Δρmax = 0.52 e Å3
S = 1.05Δρmin = 0.89 e Å3
4911 reflectionsAbsolute structure: ?
319 parametersFlack parameter: ?
16 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. dfix 1.15 0.001 n4 c24 dfix 1.47 0.001 c24 c25 dfix 2.62 0.001 n4 c25 isor 0.01 c24 n4 dfix 1.50 0.01 c24 c25

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5411 (4)0.7915 (3)0.5742 (3)0.0327 (6)
C20.6334 (4)0.8623 (3)0.6996 (3)0.0366 (7)
C30.6087 (4)0.9779 (3)0.7700 (3)0.0438 (8)
H30.67121.02270.85180.053*
C40.4896 (4)1.0283 (3)0.7190 (3)0.0474 (8)
H40.47201.10570.76730.057*
C50.4008 (4)0.9649 (3)0.6001 (3)0.0421 (7)
H50.32220.99920.56710.051*
C60.4253 (4)0.8455 (3)0.5234 (3)0.0364 (6)
C70.3364 (4)0.7893 (3)0.3972 (3)0.0400 (7)
H70.26120.83040.37150.048*
C80.2706 (4)0.6445 (3)0.1871 (3)0.0416 (7)
C90.1671 (4)0.7046 (4)0.1359 (4)0.0521 (9)
H90.13970.77590.18700.063*
C100.1057 (5)0.6584 (5)0.0103 (4)0.0650 (12)
H100.03590.69810.02350.078*
C110.1465 (5)0.5535 (5)0.0663 (4)0.0615 (11)
H110.10540.52400.15130.074*
C120.2471 (4)0.4922 (4)0.0186 (3)0.0537 (9)
H120.27450.42170.07080.064*
C130.3082 (4)0.5363 (3)0.1093 (3)0.0419 (7)
C140.4470 (4)0.3753 (3)0.1133 (3)0.0427 (7)
H140.39350.33160.02950.051*
C150.5590 (4)0.3186 (3)0.1660 (3)0.0423 (7)
C160.5876 (5)0.2028 (3)0.0879 (3)0.0520 (9)
H160.52820.16380.00510.062*
C170.6983 (5)0.1489 (4)0.1313 (4)0.0605 (10)
H170.71370.07260.07860.073*
C180.7910 (5)0.2064 (3)0.2554 (4)0.0504 (9)
H180.87020.16980.28390.061*
C190.7655 (4)0.3164 (3)0.3349 (3)0.0392 (7)
C200.6478 (4)0.3764 (3)0.2929 (3)0.0358 (7)
C210.9775 (4)0.3347 (4)0.5076 (4)0.0573 (10)
H21A0.94010.24790.49420.086*
H21B1.02140.38690.59440.086*
H21C1.06050.34030.46750.086*
C220.8491 (5)0.8702 (4)0.8620 (3)0.0602 (10)
H22A0.91040.95010.87190.090*
H22B0.92260.82020.87850.090*
H22C0.78450.88490.91860.090*
C230.6571 (4)0.6832 (3)0.3194 (3)0.0396 (7)
C250.8598 (12)0.8846 (9)0.1678 (9)0.082 (3)0.50
H25A0.79290.80490.15380.123*0.50
H25B0.91490.87130.10530.123*0.50
H25C0.79260.94290.16470.123*0.50
C240.9809 (11)0.9376 (14)0.2899 (9)0.140 (6)0.50
N41.0569 (11)0.9860 (13)0.3921 (9)0.132 (4)0.50
Co10.49216 (5)0.58348 (4)0.34297 (4)0.03236 (16)
N10.3503 (3)0.6849 (2)0.3133 (2)0.0349 (5)
N20.4128 (3)0.4825 (3)0.1717 (2)0.0366 (6)
N30.7556 (4)0.7451 (3)0.3036 (3)0.0600 (9)
O10.5684 (3)0.68069 (19)0.51481 (19)0.0362 (5)
O20.7461 (3)0.8045 (2)0.7402 (2)0.0476 (6)
O30.6284 (3)0.4801 (2)0.37473 (19)0.0367 (5)
O40.8432 (3)0.3779 (2)0.4577 (2)0.0461 (6)
O50.3077 (2)0.4757 (2)0.36607 (19)0.0371 (5)
H510.32880.40730.36760.056*
H520.29080.51790.43430.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (15)0.0286 (14)0.0302 (15)0.0068 (12)0.0109 (12)0.0111 (12)
C20.0422 (16)0.0335 (15)0.0345 (16)0.0119 (13)0.0108 (13)0.0138 (13)
C30.058 (2)0.0314 (16)0.0363 (18)0.0084 (15)0.0156 (15)0.0079 (14)
C40.065 (2)0.0344 (17)0.048 (2)0.0193 (16)0.0244 (18)0.0155 (15)
C50.0518 (19)0.0372 (17)0.049 (2)0.0205 (15)0.0229 (16)0.0230 (16)
C60.0430 (16)0.0322 (15)0.0361 (17)0.0079 (13)0.0135 (13)0.0159 (13)
C70.0390 (16)0.0454 (18)0.0448 (19)0.0130 (14)0.0130 (14)0.0270 (16)
C80.0410 (16)0.0450 (18)0.0380 (18)0.0022 (14)0.0037 (14)0.0235 (15)
C90.050 (2)0.053 (2)0.054 (2)0.0070 (17)0.0022 (17)0.0319 (19)
C100.060 (2)0.080 (3)0.061 (3)0.003 (2)0.003 (2)0.052 (3)
C110.056 (2)0.085 (3)0.039 (2)0.005 (2)0.0026 (17)0.038 (2)
C120.055 (2)0.068 (2)0.0322 (18)0.0007 (19)0.0066 (15)0.0227 (18)
C130.0401 (16)0.0505 (19)0.0326 (17)0.0005 (14)0.0066 (13)0.0208 (15)
C140.0464 (17)0.0461 (18)0.0222 (15)0.0018 (15)0.0074 (13)0.0058 (13)
C150.0538 (19)0.0385 (17)0.0315 (16)0.0066 (15)0.0183 (14)0.0096 (14)
C160.075 (2)0.0423 (18)0.0342 (18)0.0136 (18)0.0233 (17)0.0074 (15)
C170.088 (3)0.048 (2)0.050 (2)0.027 (2)0.038 (2)0.0122 (18)
C180.061 (2)0.0440 (19)0.053 (2)0.0235 (17)0.0267 (18)0.0189 (17)
C190.0439 (17)0.0349 (16)0.0412 (18)0.0097 (14)0.0190 (14)0.0149 (14)
C200.0418 (16)0.0329 (15)0.0320 (16)0.0058 (13)0.0171 (13)0.0104 (13)
C210.049 (2)0.057 (2)0.071 (3)0.0225 (18)0.0124 (19)0.031 (2)
C220.065 (2)0.063 (2)0.0345 (19)0.016 (2)0.0011 (17)0.0092 (18)
C230.0424 (17)0.0412 (17)0.0363 (17)0.0123 (14)0.0093 (14)0.0177 (14)
C250.113 (8)0.082 (7)0.094 (8)0.041 (6)0.059 (7)0.059 (6)
C240.129 (9)0.133 (9)0.168 (10)0.012 (7)0.086 (8)0.058 (7)
N40.077 (5)0.179 (9)0.147 (8)0.043 (6)0.033 (5)0.070 (7)
Co10.0380 (2)0.0324 (2)0.0258 (2)0.00821 (17)0.00750 (16)0.01238 (17)
N10.0318 (12)0.0416 (14)0.0325 (14)0.0070 (11)0.0047 (10)0.0198 (12)
N20.0401 (13)0.0410 (14)0.0260 (13)0.0049 (11)0.0074 (10)0.0140 (11)
N30.0559 (19)0.062 (2)0.073 (2)0.0101 (16)0.0259 (17)0.0368 (19)
O10.0474 (12)0.0295 (10)0.0286 (11)0.0133 (9)0.0070 (9)0.0097 (9)
O20.0571 (14)0.0414 (13)0.0326 (12)0.0172 (11)0.0017 (11)0.0073 (10)
O30.0421 (11)0.0367 (11)0.0274 (11)0.0148 (9)0.0073 (9)0.0087 (9)
O40.0451 (12)0.0452 (13)0.0476 (14)0.0200 (11)0.0099 (11)0.0178 (11)
O50.0461 (12)0.0337 (11)0.0325 (11)0.0097 (9)0.0121 (9)0.0144 (9)
Geometric parameters (Å, °) top
C1—O11.308 (3)C16—C171.340 (6)
C1—C61.411 (4)C16—H160.9300
C1—C21.420 (4)C17—C181.402 (6)
C2—O21.371 (4)C17—H170.9300
C2—C31.377 (4)C18—C191.369 (4)
C3—C41.403 (5)C18—H180.9300
C3—H30.9300C19—O41.360 (4)
C4—C51.346 (5)C19—C201.426 (5)
C4—H40.9300C20—O31.308 (4)
C5—C61.433 (4)C21—O41.438 (4)
C5—H50.9300C21—H21A0.9600
C6—C71.414 (5)C21—H21B0.9600
C7—N11.307 (4)C21—H21C0.9600
C7—H70.9300C22—O21.410 (4)
C8—C131.396 (5)C22—H22A0.9600
C8—C91.396 (4)C22—H22B0.9600
C8—N11.411 (4)C22—H22C0.9600
C9—C101.373 (6)C23—N31.137 (4)
C9—H90.9300C25—C241.4738 (12)
C10—C111.378 (7)C25—H25A0.9600
C10—H100.9300C25—H25B0.9600
C11—C121.372 (5)C25—H25C0.9600
C11—H110.9300C24—N41.1532 (11)
C12—C131.399 (5)Co1—O11.884 (2)
C12—H120.9300Co1—O31.884 (2)
C13—N21.420 (4)Co1—O52.030 (2)
C14—N21.299 (4)Co1—N11.890 (2)
C14—C151.422 (5)Co1—N21.885 (3)
C14—H140.9300Co1—C231.858 (3)
C15—C201.420 (5)O5—H510.8500
C15—C161.423 (5)O5—H520.8500
O1—C1—C6124.8 (3)O4—C19—C18125.5 (3)
O1—C1—C2117.7 (3)O4—C19—C20113.5 (3)
C6—C1—C2117.5 (3)C18—C19—C20121.0 (3)
O2—C2—C3125.0 (3)O3—C20—C15124.8 (3)
O2—C2—C1113.5 (3)O3—C20—C19117.5 (3)
C3—C2—C1121.5 (3)C15—C20—C19117.7 (3)
C2—C3—C4120.3 (3)O4—C21—H21A109.5
C2—C3—H3119.9O4—C21—H21B109.5
C4—C3—H3119.9H21A—C21—H21B109.5
C5—C4—C3120.1 (3)O4—C21—H21C109.5
C5—C4—H4120.0H21A—C21—H21C109.5
C3—C4—H4120.0H21B—C21—H21C109.5
C4—C5—C6121.2 (3)O2—C22—H22A109.5
C4—C5—H5119.4O2—C22—H22B109.5
C6—C5—H5119.4H22A—C22—H22B109.5
C1—C6—C7122.6 (3)O2—C22—H22C109.5
C1—C6—C5119.5 (3)H22A—C22—H22C109.5
C7—C6—C5117.9 (3)H22B—C22—H22C109.5
N1—C7—C6126.0 (3)N3—C23—Co1178.5 (3)
N1—C7—H7117.0C24—C25—H25A109.5
C6—C7—H7117.0C24—C25—H25B109.5
C13—C8—C9119.4 (3)H25A—C25—H25B109.5
C13—C8—N1114.1 (3)C24—C25—H25C109.5
C9—C8—N1126.4 (3)H25A—C25—H25C109.5
C10—C9—C8119.9 (4)H25B—C25—H25C109.5
C10—C9—H9120.0N4—C24—C25169.6 (8)
C8—C9—H9120.0C23—Co1—O392.27 (12)
C9—C10—C11120.6 (4)C23—Co1—O191.05 (13)
C9—C10—H10119.7O3—Co1—O184.29 (9)
C11—C10—H10119.7C23—Co1—N290.44 (13)
C12—C11—C10120.7 (4)O3—Co1—N295.12 (11)
C12—C11—H11119.6O1—Co1—N2178.41 (10)
C10—C11—H11119.6C23—Co1—N189.65 (12)
C11—C12—C13119.5 (4)O3—Co1—N1178.03 (10)
C11—C12—H12120.2O1—Co1—N195.21 (10)
C13—C12—H12120.2N2—Co1—N185.34 (12)
C8—C13—C12119.8 (3)C23—Co1—O5178.58 (11)
C8—C13—N2114.3 (3)O3—Co1—O589.01 (9)
C12—C13—N2125.8 (3)O1—Co1—O589.68 (10)
N2—C14—C15125.9 (3)N2—Co1—O588.83 (11)
N2—C14—H14117.1N1—Co1—O589.08 (10)
C15—C14—H14117.1C7—N1—C8121.7 (3)
C20—C15—C14122.1 (3)C7—N1—Co1124.9 (2)
C20—C15—C16119.0 (3)C8—N1—Co1113.1 (2)
C14—C15—C16118.8 (3)C14—N2—C13121.8 (3)
C17—C16—C15121.4 (4)C14—N2—Co1125.6 (2)
C17—C16—H16119.3C13—N2—Co1112.7 (2)
C15—C16—H16119.3C1—O1—Co1125.53 (19)
C16—C17—C18120.6 (3)C2—O2—C22117.8 (3)
C16—C17—H17119.7C20—O3—Co1126.2 (2)
C18—C17—H17119.7C19—O4—C21118.4 (3)
C19—C18—C17120.3 (3)Co1—O5—H51112.8
C19—C18—H18119.9Co1—O5—H52109.2
C17—C18—H18119.9H51—O5—H52107.5
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O1i0.852.182.913 (3)145.
O5—H51···O2i0.852.242.959 (3)142.
O5—H52···O3i0.852.282.926 (3)133.
O5—H52···O4i0.852.102.883 (3)153.
Symmetry codes: (i) −x+1, −y+1, −z+1.
Table 1
Selected geometric parameters (Å)
top
Co1—O11.884 (2)Co1—N11.890 (2)
Co1—O31.884 (2)Co1—N21.885 (3)
Co1—O52.030 (2)Co1—C231.858 (3)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O5—H51···O1i0.852.182.913 (3)145.
O5—H51···O2i0.852.242.959 (3)142.
O5—H52···O3i0.852.282.926 (3)133.
O5—H52···O4i0.852.102.883 (3)153.
Symmetry codes: (i) −x+1, −y+1, −z+1.
Acknowledgements top

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), the Project of the Science and Technology Innovation Team of University of Heilongjiang Province (2010td03) and Heilongjiang University, China.

references
References top

Costes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, m5994–m6000.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Lin, Y., Li, G.-M., Chen, P., Yan, P.-F. & Hou, G.-F. (2011). Acta Cryst. E67, m1162.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.