supplementary materials


xu5402 scheme

Acta Cryst. (2012). E68, o72    [ doi:10.1107/S1600536811051798 ]

2-(1H-Benzotriazol-1-yl)-1-(furan-2-yl)ethanol

Ö. Özel Güven, M. Bayraktar, S. J. Coles and T. Hökelek

Abstract top

In the title compound, C12H11N3O2, the benzotriazole ring system is approximately planar [maximum deviation = 0.008 (1) Å] and its mean plane is oriented at a dihedral angle of 24.05 (4)° with respect to the furan ring. In the crystal, O-H...N hydrogen bonds link the molecules into chains along the ac diagonal. [pi]-[pi] stacking between the furan rings, between the triazole and benzene rings, and between the benzene rings [centroid-centroid distances = 3.724 (1), 3.786 (1) and 3.8623 (9) Å] are also observed.

Comment top

Azole compounds have important biological activities. Benzotriazol derivatives also exhibit a good degree of analgesic, anti-inflammatory, diuretic, antiviral and antihypertensive activities (Kopanska et al., 2004; Yu et al., 2003; Hirokawa et al., 1998). Crystal structures of similar compounds like 1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanol (Özel Güven et al., 2008), 2-(1H-benzotriazol-1-yl)-1-phenylethanol (Özel Güven et al., 2010), 2-(1H-benzotriazol-1-yl)-3-(2,6-dichlorophenyl)-1-phenylpropan-1-ol (Özel Güven et al., 2011), fluconazole (Caira et al., 2004), and other benzotriazole ring possesing compounds (Katritzky et al., 2001; Nanjunda Swamy et al., 2006) have been reported before. Now, we report herein the crystal structure of the title alcohol, (I).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The planar benzotriazole ring [B (N1-N3/C7-C12)] is oriented with respect to the furan [A (O2/C2-C5)] ring at a dihedral angle of A/B = 24.05 (4)°. Atom C6 is 0.043 (2) Å away from the plane of the benzotriazole ring and atoms C1 and O1 are 0.010 (2) and 0.043 (1) Å away from the plane of the furan ring, respectively.

In the crystal, O—H···N hydrogen bonds (table 1) link the molecules into chains (Fig. 2). There also exist π···π contacts between the furan rings, between the triazole and benzene rings and between the benzene rings, Cg1—Cg1i, Cg2—Cg3ii and Cg3—Cg3ii, may further stabilize the structure [centroid-centroid distances = 3.724 (1), 3.786 (1) and 3.8623 (9) Å; symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; Cg1, Cg2 and Cg3 are the centroids of the rings A (O2/C2-C5), C (N1-N3/C7/C12) and D (C7-C12), respectively].

Related literature top

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For related structures, see: Caira et al. (2004); Katritzky et al. (2001); Özel Güven et al. (2008, 2010, 2011); Nanjunda Swamy et al. (2006).

Experimental top

The title compound, (I), was synthesized by reduction of 2-(1H-benzotriazol-1-yl)-1-(furan-2-yl)ethanone with sodiumborohydrate. A mixture of 2-(1H-benzotriazol-1-yl)-1-(furan-2-yl)ethanone (1010 mg, 4.44 mmol) and sodium borohydrate (561 mg, 8.89 mmol) in ethanol (50 ml) was refluxed for 4 h. After evaporation of the solvent, the mixture was neutralized with dilute HCl, and then refluxed for 30 min. After the mixture was cooled, the solution was alkalinized with dilute NaOH and the resulting precipitate was filtered. The filtrate was extracted with chloroform, then the organic phase was dried and evaporated. The residue was crystallized from 2-propanol to obtain colorless crystals suitable for X-ray analysis (yield; 634 mg, 62%).

Refinement top

H atoms were positioned geometrically with O—H = 0.82 Å (for OH group), C—H = 0.98, 0.93 and 0.97 Å for methine, aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C,O), where k = 1.5 for OH H-atom and k = 1.2 for all other H-atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-(1H-Benzotriazol-1-yl)-1-(furan-2-yl)ethanol top
Crystal data top
C12H11N3O2F(000) = 480
Mr = 229.24Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6399 reflections
a = 11.3606 (4) Åθ = 2.9–27.5°
b = 11.1034 (4) ŵ = 0.10 mm1
c = 8.7860 (2) ÅT = 120 K
β = 96.938 (2)°Block, colorless
V = 1100.16 (6) Å30.50 × 0.50 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2531 independent reflections
Radiation source: fine-focus sealed tube2166 reflections with I > 2σ(I)
graphiteRint = 0.037
φ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1414
Tmin = 0.953, Tmax = 0.981k = 1414
12372 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.4779P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2531 reflectionsΔρmax = 0.58 e Å3
155 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.144 (12)
Crystal data top
C12H11N3O2V = 1100.16 (6) Å3
Mr = 229.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3606 (4) ŵ = 0.10 mm1
b = 11.1034 (4) ÅT = 120 K
c = 8.7860 (2) Å0.50 × 0.50 × 0.20 mm
β = 96.938 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2531 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2166 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.981Rint = 0.037
12372 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.58 e Å3
S = 1.11Δρmin = 0.55 e Å3
2531 reflectionsAbsolute structure: ?
155 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20677 (10)0.98199 (10)0.08354 (12)0.0223 (3)
H10.15590.93460.10480.033*
O20.50236 (10)1.06715 (11)0.24705 (13)0.0247 (3)
N10.18510 (11)0.91870 (12)0.39959 (14)0.0196 (3)
N20.22565 (12)0.82297 (13)0.48488 (16)0.0249 (3)
N30.13604 (12)0.75376 (13)0.50674 (16)0.0248 (3)
C10.30653 (14)0.97510 (14)0.19621 (17)0.0193 (3)
H1A0.33920.89330.19890.023*
C20.39723 (13)1.06237 (14)0.15318 (17)0.0194 (3)
C30.57056 (15)1.15175 (15)0.18424 (19)0.0257 (4)
H30.64711.17320.22470.031*
C40.51146 (15)1.19920 (15)0.05628 (19)0.0252 (4)
H40.53851.25810.00620.030*
C50.39773 (14)1.14020 (15)0.03582 (18)0.0238 (4)
H50.33671.15330.04290.029*
C60.26911 (14)1.00691 (14)0.35398 (17)0.0214 (3)
H6A0.33861.00910.42980.026*
H6B0.23301.08620.34960.026*
C70.06500 (13)0.91156 (13)0.36343 (16)0.0178 (3)
C80.01985 (14)0.98551 (14)0.27982 (17)0.0202 (3)
H80.00101.05600.23260.024*
C90.13571 (14)0.94734 (15)0.27193 (17)0.0226 (4)
H90.19490.99390.21820.027*
C100.16792 (14)0.83958 (15)0.34283 (17)0.0232 (4)
H100.24740.81740.33390.028*
C110.08469 (14)0.76679 (14)0.42472 (18)0.0222 (4)
H110.10590.69620.47130.027*
C120.03398 (13)0.80499 (13)0.43403 (17)0.0191 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0207 (6)0.0231 (6)0.0226 (6)0.0047 (4)0.0004 (4)0.0002 (4)
O20.0204 (6)0.0259 (6)0.0271 (6)0.0032 (4)0.0001 (4)0.0002 (4)
N10.0181 (6)0.0205 (6)0.0205 (6)0.0001 (5)0.0030 (5)0.0020 (5)
N20.0224 (7)0.0249 (7)0.0272 (7)0.0045 (5)0.0023 (5)0.0044 (5)
N30.0231 (7)0.0221 (7)0.0293 (7)0.0043 (5)0.0038 (5)0.0059 (6)
C10.0204 (7)0.0172 (7)0.0203 (7)0.0007 (6)0.0028 (6)0.0012 (5)
C20.0168 (7)0.0204 (7)0.0213 (7)0.0006 (6)0.0031 (6)0.0038 (6)
C30.0203 (8)0.0251 (8)0.0322 (8)0.0052 (6)0.0054 (6)0.0052 (6)
C40.0246 (8)0.0237 (8)0.0285 (8)0.0047 (6)0.0087 (6)0.0016 (6)
C50.0223 (8)0.0264 (8)0.0228 (7)0.0012 (6)0.0029 (6)0.0007 (6)
C60.0201 (7)0.0221 (8)0.0223 (7)0.0039 (6)0.0041 (6)0.0025 (6)
C70.0185 (7)0.0178 (7)0.0173 (7)0.0002 (6)0.0034 (5)0.0017 (5)
C80.0248 (8)0.0178 (7)0.0184 (7)0.0020 (6)0.0040 (6)0.0030 (5)
C90.0213 (8)0.0274 (8)0.0185 (7)0.0056 (6)0.0002 (6)0.0009 (6)
C100.0190 (7)0.0286 (8)0.0224 (7)0.0031 (6)0.0043 (6)0.0042 (6)
C110.0243 (8)0.0191 (8)0.0244 (8)0.0022 (6)0.0074 (6)0.0004 (6)
C120.0212 (8)0.0169 (7)0.0195 (7)0.0022 (6)0.0041 (6)0.0004 (5)
Geometric parameters (Å, °) top
O1—C11.4139 (18)C4—H40.9300
O1—H10.8200C5—C41.440 (2)
O2—C21.3681 (19)C5—H50.9300
O2—C31.375 (2)C6—H6A0.9700
N1—N21.3492 (18)C6—H6B0.9700
N1—C61.4571 (19)C7—C121.401 (2)
N1—C71.365 (2)C8—C71.404 (2)
N3—N21.308 (2)C8—C91.376 (2)
N3—C121.377 (2)C8—H80.9300
C1—C61.539 (2)C9—H90.9300
C1—H1A0.9800C10—C91.417 (2)
C2—C11.496 (2)C10—H100.9300
C2—C51.346 (2)C11—C101.379 (2)
C3—C41.345 (2)C11—C121.406 (2)
C3—H30.9300C11—H110.9300
C1—O1—H1109.5N1—C6—C1110.77 (12)
C2—O2—C3106.13 (12)N1—C6—H6A109.5
N2—N1—C7110.36 (12)N1—C6—H6B109.5
N2—N1—C6119.43 (12)C1—C6—H6A109.5
C7—N1—C6130.13 (13)C1—C6—H6B109.5
N3—N2—N1108.96 (13)H6A—C6—H6B108.1
N2—N3—C12108.40 (13)N1—C7—C8133.73 (14)
O1—C1—C2107.84 (12)N1—C7—C12104.11 (13)
O1—C1—C6109.45 (12)C12—C7—C8122.15 (14)
O1—C1—H1A109.6C7—C8—H8122.0
C2—C1—C6110.64 (12)C9—C8—C7115.98 (14)
C2—C1—H1A109.6C9—C8—H8122.0
C6—C1—H1A109.6C8—C9—C10122.27 (15)
O2—C2—C1116.78 (13)C8—C9—H9118.9
C5—C2—O2110.66 (14)C10—C9—H9118.9
C5—C2—C1132.56 (14)C9—C10—H10119.1
O2—C3—H3124.6C11—C10—C9121.81 (15)
C4—C3—O2110.75 (14)C11—C10—H10119.1
C4—C3—H3124.6C10—C11—C12116.47 (14)
C3—C4—C5106.01 (14)C10—C11—H11121.8
C3—C4—H4127.0C12—C11—H11121.8
C5—C4—H4127.0N3—C12—C7108.16 (13)
C2—C5—C4106.45 (14)N3—C12—C11130.53 (15)
C2—C5—H5126.8C7—C12—C11121.31 (14)
C4—C5—H5126.8
C6—N1—N2—N3177.41 (13)C5—C2—C1—O10.9 (2)
C7—N1—N2—N30.44 (17)C5—C2—C1—C6118.73 (19)
N2—N1—C6—C192.27 (16)O2—C2—C5—C40.09 (18)
C7—N1—C6—C184.02 (19)C1—C2—C5—C4179.58 (15)
N2—N1—C7—C8179.68 (16)O2—C3—C4—C50.27 (18)
N2—N1—C7—C120.62 (16)C2—C5—C4—C30.21 (18)
C6—N1—C7—C83.8 (3)N1—C7—C12—N30.58 (16)
C6—N1—C7—C12177.17 (14)N1—C7—C12—C11179.06 (14)
C12—N3—N2—N10.05 (17)C8—C7—C12—N3179.77 (13)
N2—N3—C12—C70.34 (17)C8—C7—C12—C110.1 (2)
N2—N3—C12—C11179.25 (15)C9—C8—C7—N1178.60 (15)
C3—O2—C2—C1179.51 (13)C9—C8—C7—C120.3 (2)
C3—O2—C2—C50.07 (17)C7—C8—C9—C100.4 (2)
C2—O2—C3—C40.22 (18)C11—C10—C9—C80.3 (2)
O1—C1—C6—N164.08 (16)C10—C11—C12—N3179.57 (15)
C2—C1—C6—N1177.23 (12)C10—C11—C12—C70.0 (2)
O2—C2—C1—O1178.53 (12)C12—C11—C10—C90.1 (2)
O2—C2—C1—C661.80 (17)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.822.262.7968 (18)123
Symmetry codes: (i) x, −y+3/2, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.822.262.7968 (18)123
Symmetry codes: (i) x, −y+3/2, z−1/2.
Acknowledgements top

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2010-13-02-05).

references
References top

Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Hirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. & Med. Chem. Lett. 8, 1973–1978.

Katritzky, A. R., Zhang, S. M., Kurz, T., Wang, M. Y. & Steel, P. J. (2001). Org. Lett. 3, 2807–2809.

Kopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624.

Nanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999–1004.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o959.

Özel Güven, Ö., Çapanlar, S., Coles, S. J. & Hökelek, T. (2011). Acta Cryst. E67, o2510.

Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144.