supplementary materials


xu5407 scheme

Acta Cryst. (2012). E68, o222    [ doi:10.1107/S1600536811054523 ]

4-(2,2-Difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile

F.-W. Meng, G.-F. Hou, Y.-H. Yu and J.-S. Gao

Abstract top

In the title compound, C12H6F2N2O2, the 2,2-difluoro-1,3-benzodioxole ring system is approximately planar [maximum deviation = 0.012 (2) Å] and its mean plane is twisted with respect to the pyrrole ring, making a dihedral angle of 2.51 (9)°. In the crystal, N-H...N hydrogen bonds link the molecules into chains running along the a axis. [pi]-[pi] stacking is also observed between parallel benzene rings of adjacent molecules, the centroid-centroid distance being 3.7527 (13) Å.

Comment top

Fludioxonil also know as Maxim, which is kind of fungicide developed and produced by Novartis (Li et al., 2009; Pfluger et al., 1990). Herein we report its structure.

In the title compound, phenyl and pyrrole ring are almost coplanar with a small dihedral angle of 2.51 (9)° (Figure 1). Intermolecular N—H···N hydrogen bonds link molecules into chains along [100] (Figure 2, Table 1).

Related literature top

For background to the title compound, see: Li et al. (2009); Pfluger et al. (1990). For the synthesis, see: Nyfeler, R. & Ehrenfreund (1986);

Experimental top

The title compound was prepared by the reaction of 2-cyano-3-(2,2-difluoro-1,3-benzodioxol-4-yl)-2-propenamide and tosylmethyl isocyanide under alkaline condition (Robert & Josef, 1986). Colorless block crystals suitable for singl crystal X-ray diffraction were obtained by the recrystallization of title compound from a dichloromethane solution.

Refinement top

N-bound H atom was located in a differece Fourier map and positional parameters were refined, Uiso(H) = 1.5Ueq(N). Other H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing the hydrogen-bonding chain structure along [100].
4-(2,2-Difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile top
Crystal data top
C12H6F2N2O2Z = 2
Mr = 248.19F(000) = 252
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5726 (15) ÅCell parameters from 3390 reflections
b = 7.8114 (16) Åθ = 3.4–27.5°
c = 8.9785 (18) ŵ = 0.13 mm1
α = 93.58 (3)°T = 293 K
β = 94.65 (3)°Block, colorless
γ = 97.47 (3)°0.39 × 0.32 × 0.15 mm
V = 523.42 (18) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2359 independent reflections
Radiation source: fine-focus sealed tube1485 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scanθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.950, Tmax = 0.980k = 1010
5120 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.0143P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2359 reflectionsΔρmax = 0.19 e Å3
167 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (6)
Crystal data top
C12H6F2N2O2γ = 97.47 (3)°
Mr = 248.19V = 523.42 (18) Å3
Triclinic, P1Z = 2
a = 7.5726 (15) ÅMo Kα radiation
b = 7.8114 (16) ŵ = 0.13 mm1
c = 8.9785 (18) ÅT = 293 K
α = 93.58 (3)°0.39 × 0.32 × 0.15 mm
β = 94.65 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2359 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1485 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.980Rint = 0.026
5120 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118Δρmax = 0.19 e Å3
S = 1.04Δρmin = 0.15 e Å3
2359 reflectionsAbsolute structure: ?
167 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0680 (2)0.6305 (2)0.7663 (2)0.0492 (4)
C20.1137 (2)0.6131 (3)0.7677 (2)0.0580 (5)
H20.17230.57120.84780.070*
C30.2036 (2)0.6626 (3)0.6407 (2)0.0604 (5)
H30.32770.65340.63480.072*
C40.1158 (2)0.7254 (2)0.5222 (2)0.0533 (5)
H40.18330.75660.43950.064*
C50.0715 (2)0.7442 (2)0.52139 (18)0.0412 (4)
C60.1551 (2)0.6918 (2)0.64884 (19)0.0425 (4)
C70.3564 (2)0.6277 (3)0.8215 (2)0.0580 (5)
C80.1679 (2)0.8093 (2)0.39662 (18)0.0406 (4)
C90.0963 (2)0.8705 (2)0.25982 (19)0.0424 (4)
C100.2365 (2)0.9151 (2)0.1754 (2)0.0515 (5)
H100.22810.95810.08120.062*
C110.3488 (2)0.8223 (3)0.3852 (2)0.0523 (5)
H110.43230.79210.45720.063*
C120.0831 (2)0.8924 (2)0.2144 (2)0.0474 (4)
F10.46357 (16)0.74161 (18)0.91577 (13)0.0804 (4)
F20.43750 (16)0.48669 (18)0.81288 (16)0.0803 (4)
N10.38690 (19)0.8860 (2)0.25235 (18)0.0575 (5)
H1010.4958 (17)0.901 (3)0.220 (3)0.086*
N20.2273 (2)0.9115 (2)0.17807 (19)0.0631 (5)
O10.19296 (17)0.5902 (2)0.87638 (15)0.0650 (4)
O20.33825 (15)0.69183 (17)0.68299 (13)0.0540 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0499 (10)0.0565 (11)0.0440 (10)0.0091 (8)0.0105 (8)0.0133 (8)
C20.0507 (10)0.0722 (13)0.0562 (12)0.0089 (9)0.0222 (9)0.0210 (10)
C30.0379 (9)0.0835 (14)0.0652 (13)0.0130 (9)0.0160 (8)0.0240 (11)
C40.0403 (9)0.0718 (12)0.0515 (11)0.0115 (8)0.0092 (8)0.0185 (10)
C50.0381 (8)0.0465 (9)0.0405 (9)0.0070 (7)0.0077 (7)0.0078 (7)
C60.0354 (8)0.0514 (9)0.0422 (9)0.0057 (7)0.0092 (7)0.0078 (8)
C70.0467 (10)0.0838 (14)0.0474 (11)0.0123 (10)0.0066 (8)0.0252 (10)
C80.0374 (8)0.0470 (9)0.0386 (9)0.0068 (7)0.0065 (7)0.0072 (7)
C90.0382 (8)0.0512 (10)0.0396 (9)0.0084 (7)0.0061 (7)0.0081 (7)
C100.0451 (9)0.0727 (12)0.0402 (10)0.0117 (8)0.0082 (7)0.0193 (9)
C110.0388 (9)0.0759 (12)0.0461 (11)0.0121 (8)0.0066 (7)0.0224 (9)
C120.0442 (10)0.0602 (11)0.0398 (10)0.0085 (8)0.0064 (7)0.0134 (8)
F10.0666 (8)0.1180 (11)0.0512 (7)0.0057 (7)0.0045 (6)0.0148 (7)
F20.0734 (8)0.0941 (9)0.0855 (10)0.0318 (7)0.0215 (6)0.0415 (8)
N10.0377 (8)0.0870 (12)0.0525 (10)0.0100 (8)0.0134 (7)0.0254 (8)
N20.0437 (9)0.0914 (13)0.0580 (11)0.0144 (8)0.0042 (7)0.0246 (9)
O10.0525 (8)0.1003 (11)0.0473 (8)0.0114 (7)0.0113 (6)0.0335 (7)
O20.0382 (6)0.0824 (9)0.0444 (7)0.0082 (6)0.0065 (5)0.0242 (6)
Geometric parameters (Å, °) top
C1—C21.366 (3)C7—F11.331 (2)
C1—C61.368 (2)C7—O11.372 (2)
C1—O11.391 (2)C7—O21.373 (2)
C2—C31.383 (3)C8—C111.373 (2)
C2—H20.9300C8—C91.437 (2)
C3—C41.382 (2)C9—C101.375 (2)
C3—H30.9300C9—C121.421 (2)
C4—C51.407 (2)C10—N11.336 (2)
C4—H40.9300C10—H100.9300
C5—C61.373 (2)C11—N11.358 (2)
C5—C81.468 (2)C11—H110.9300
C6—O21.3960 (19)C12—N21.145 (2)
C7—F21.330 (2)N1—H1010.891 (10)
C2—C1—C6122.93 (17)F2—C7—O2109.90 (18)
C2—C1—O1127.94 (16)F1—C7—O2109.89 (16)
C6—C1—O1109.12 (15)O1—C7—O2110.86 (15)
C1—C2—C3114.73 (17)C11—C8—C9104.79 (14)
C1—C2—H2122.6C11—C8—C5126.80 (15)
C3—C2—H2122.6C9—C8—C5128.40 (14)
C4—C3—C2122.42 (16)C10—C9—C12123.08 (16)
C4—C3—H3118.8C10—C9—C8107.74 (15)
C2—C3—H3118.8C12—C9—C8129.12 (15)
C3—C4—C5122.74 (17)N1—C10—C9108.11 (15)
C3—C4—H4118.6N1—C10—H10125.9
C5—C4—H4118.6C9—C10—H10125.9
C6—C5—C4112.87 (15)N1—C11—C8109.45 (15)
C6—C5—C8123.29 (14)N1—C11—H11125.3
C4—C5—C8123.83 (15)C8—C11—H11125.3
C1—C6—C5124.29 (15)N2—C12—C9179.4 (2)
C1—C6—O2108.24 (15)C10—N1—C11109.90 (14)
C5—C6—O2127.46 (14)C10—N1—H101125.5 (15)
F2—C7—F1105.63 (16)C11—N1—H101124.5 (15)
F2—C7—O1110.18 (16)C7—O1—C1105.74 (14)
F1—C7—O1110.26 (18)C7—O2—C6106.02 (13)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H101···N2i0.89 (1)2.15 (1)3.034 (2)169 (2)
Symmetry codes: (i) x+1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H101···N2i0.89 (1)2.15 (1)3.034 (2)169 (2)
Symmetry codes: (i) x+1, y, z.
Acknowledgements top

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University, China, for supporting the work.

references
References top

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Li, C., Miu, H.-D., Zeng, Z.-W., Wang, M.-J., Wu, Z.-X., Yang, F. & Shi, W.-J. (2009). Modern Agrochem. 8, 19–24.

Nyfeler, R. & Ehrenfreund, J. (1986). Switzerland Patent No. EP0206999.

Pfluger, R. W., Indermühle, J. & Felix, F. (1990). Switzerland Patent No. EP0378046.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.