supplementary materials


yk2031 scheme

Acta Cryst. (2012). E68, o8    [ doi:10.1107/S1600536811050653 ]

(3-{[N-(5-Chloro-2-hydroxyphenyl)oxamoyl]amino}propyl)dimethylazanium perchlorate

X.-T. Yue, X.-W. Li and Z.-Y. Wu

Abstract top

In the title compound, C13H19ClN3O3+·ClO4-, the 3-(dimethylammonio)propyl group of the cation is disordered over two sets of sites with occupancies 0.772 (6) and 0.228 (6). The cations are joined by pairs of N-H...O hydrogen bonds into centrosymmetric dimers and these dimers are assembled into chains along the a-axis direction, also through N-H...O hydrogen bonds. The perchlorate anions are linked to the hydroxy groups of the cations by O-H...O hydrogen bonds. The positively charged ammonium groups and the anions give rise to folded layers parallel to the ab plane.

Comment top

Aimed for the DNA-binding study of a series of asymmetric N,N-disubstituted oxamide complexes (Li et al., 2010), we attempted to prepare a binuclear copper(II) complex with N-(5-chloro-2-hydroxyphenyl)-N'-(3-(dimethylammonio)propyl) oxamide (H3chdpoxd). Unexpectedly, the perchlorate salt of the ligand, (H4chdpoxd)ClO4, I, was obtained.

The title compound consists of a H4chdpoxd+ cations and a ClO4- anions (Fig. 1). In the cation, the oxamide group adopts transoid conformation. The benzene ring is nearly parallel to the oxamide plane, with a dihedral angle of 5.39 (15)°. As for the alkyl substituent, the torsion angles of C8—N2—C9A—C10A and C8—N2—C9B—C10B are 86.1 (6)° and 117.6 (19)°, respectively.

In the crystal, the positively charged ammonium N atoms (N3A and N3B) together with the perchlorate anions form a folded layer structure with a quadrilateral pattern (Fig. 2). Such a charge-balanced layer is paralled to a0b plane. Cations related by an inversion center are linked by the hydrogen bonds involving oxamide groups (N2—H2A···O2, Table 3) to form a dimer. These dimers form chains parallel to a direction through the hydrogen bonds involving the ammonium groups (Fig. 3). The perchlorate ions append to the chains through the hydrogen bonds with phenolic hydroxy groups.

Related literature top

For DNA binding of oxamide complexes, see: Li et al. (2010). For the synthesis, see: Tao et al. (2003).

Experimental top

The ligand, H3chdpoxd, was prepared according to the method proposed by Tao et al., (2003). To a solution of H3chdpoxd (0.0299 g, 0.1 mmol) in methanol (10 ml) were added sequentially piperidine (0.2 mmol) and a solution of Cu(ClO4)2.6H2O (0.0742 g, 0.2 mmol) in methanol (10 ml). The mixture was intensively stirred until the solution became clear, and then 2,9-dimethyl-1,10-phenanthroline (dmphen, 0.0432 g, 0.4 mmol) in methanol (10 ml) was added. Stirring of the reaction mixture was continued at 333 K for 2 h. Although our original goal was to prepare a dinuclear copper(II) complex with chdpoxd3- as a bridge ligand and 2,9-dimethyl-1,10-phenanthroline as a terminal ligand, the colourless crystals of the title compound, (H4chdpoxd)ClO4, unexpectedly precipitated on the seventh day, after the solution had been left to stand at room temperature.

Anal. Calcd for C13H19Cl2N3O7 (%): C, 39.01; H, 4.79; N, 10.50. Found: C, 38.49, H, 4.72, N, 11.06.

Refinement top

The 3-(dimethylamminio)propyl group of the cation is disordered over two sets of positions, suffixed with A and B. The occupancies were refined freely to 0.772 (6) and 0.228 (6), respectively. The bond lengths C9A—C10A, C10A—C11A and C10B—C11B were restrained to 1.54 Å with DFIX instructionto to avoid the unreasonable geometries. The H atoms on the phenolic hydroxyl and the oxamide group were found in a difference Fourier map and then refined freely except for the restrain on N1—H1A bond length of 0.86 Å. Other H atoms were placed in calculated positions, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 (methyl) and N—H = 0.91 Å, and refined using riding model, with Uiso(H) = 1.2 Ueq, or 1.5 Ueq for methyl groups.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. The displacement ellipsoids are drawn at the 30% probability levels and H atoms are shown as small spheres of arbitrary radii. Two position of a disordered group are depicted in different styles. Dotted line indicate hydrogen bond.
[Figure 2] Fig. 2. A folded layer structure parallel to a0b plane formed by the positively charged ammonium groups and the perchlorate ions with a quadrilateral pattern.
[Figure 3] Fig. 3. A view of a hydrogen bonding in the title compound. Symmetry codes: i = -x + 1, -y + 1, -z + 1; ii = x - 1, y, z.
(3-{[N-(5-Chloro-2-hydroxyphenyl)oxamoyl]amino}propyl)dimethylazanium perchlorate top
Crystal data top
C13H19ClN3O3+·ClO4F(000) = 832
Mr = 400.21Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2302 reflections
a = 6.7423 (5) Åθ = 2.5–23.6°
b = 12.8169 (10) ŵ = 0.39 mm1
c = 21.6454 (17) ÅT = 296 K
β = 98.275 (1)°Block, colourless
V = 1851.0 (2) Å30.52 × 0.28 × 0.13 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
4204 independent reflections
Radiation source: fine-focus sealed tube2526 reflections with I > 2σ(I)
graphiteRint = 0.028
φ and ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 87
Tmin = 0.823, Tmax = 0.951k = 1616
10727 measured reflectionsl = 2827
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0933P)2 + 0.3342P]
where P = (Fo2 + 2Fc2)/3
4204 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.56 e Å3
16 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H19ClN3O3+·ClO4V = 1851.0 (2) Å3
Mr = 400.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7423 (5) ŵ = 0.39 mm1
b = 12.8169 (10) ÅT = 296 K
c = 21.6454 (17) Å0.52 × 0.28 × 0.13 mm
β = 98.275 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
4204 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2526 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.951Rint = 0.028
10727 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179Δρmax = 0.56 e Å3
S = 1.03Δρmin = 0.26 e Å3
4204 reflectionsAbsolute structure: ?
297 parametersFlack parameter: ?
16 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.0226 (3)0.10172 (8)0.45657 (6)0.1407 (6)
O11.2592 (3)0.49690 (16)0.35643 (11)0.0730 (6)
O20.7001 (3)0.45689 (16)0.47116 (10)0.0706 (6)
O30.8146 (3)0.69101 (15)0.40187 (9)0.0674 (5)
N10.9394 (3)0.49367 (17)0.41071 (10)0.0555 (5)
C11.2142 (4)0.4024 (2)0.37909 (12)0.0548 (6)
C21.0414 (4)0.39935 (19)0.40791 (11)0.0521 (6)
C30.9810 (5)0.3065 (2)0.43123 (13)0.0663 (8)
H30.86560.30310.45010.080*
C41.0967 (6)0.2179 (2)0.42594 (15)0.0814 (10)
C51.2658 (6)0.2206 (2)0.39791 (14)0.0791 (9)
H51.34010.16030.39470.095*
C61.3251 (5)0.3137 (2)0.37437 (13)0.0665 (8)
H61.44010.31640.35530.080*
C70.7847 (3)0.5170 (2)0.43988 (11)0.0488 (6)
C80.7207 (4)0.6308 (2)0.43042 (11)0.0499 (6)
N20.5596 (3)0.65522 (19)0.45564 (10)0.0549 (5)
C9A0.4556 (10)0.7539 (4)0.4449 (3)0.0573 (15)0.772 (6)
H9A0.55040.80930.44030.069*0.772 (6)
H9B0.38590.77060.47980.069*0.772 (6)
C10A0.3053 (5)0.7430 (3)0.3848 (2)0.0621 (11)0.772 (6)
H10A0.37830.73370.34980.075*0.772 (6)
H10B0.22450.68110.38790.075*0.772 (6)
C11A0.1694 (6)0.8358 (3)0.37263 (17)0.0574 (11)0.772 (6)
H11A0.11310.85260.41020.069*0.772 (6)
H11B0.24670.89540.36220.069*0.772 (6)
N3A0.0037 (8)0.8157 (4)0.3207 (2)0.0601 (14)0.772 (6)
H3A0.06040.75700.33080.072*0.772 (6)
C12A0.0819 (11)0.7936 (7)0.2601 (3)0.0734 (19)0.772 (6)
H12A0.15020.85410.24770.110*0.772 (6)
H12B0.02810.77680.22840.110*0.772 (6)
H12C0.17330.73580.26580.110*0.772 (6)
C13A0.1473 (9)0.9010 (5)0.3133 (3)0.0913 (19)0.772 (6)
H13A0.20040.91030.35170.137*0.772 (6)
H13B0.25400.88320.28070.137*0.772 (6)
H13C0.08500.96460.30260.137*0.772 (6)
C9B0.482 (3)0.7601 (11)0.4581 (12)0.098 (11)0.228 (6)
H9C0.57400.80710.44160.118*0.228 (6)
H9D0.48250.77830.50160.118*0.228 (6)
C10B0.2703 (17)0.7816 (12)0.4234 (5)0.071 (4)0.228 (6)
H10C0.17970.72780.43400.085*0.228 (6)
H10D0.22330.84810.43710.085*0.228 (6)
C11B0.2654 (18)0.7841 (11)0.3535 (5)0.064 (4)0.228 (6)
H11C0.33770.84530.34270.077*0.228 (6)
H11D0.33510.72310.34110.077*0.228 (6)
N3B0.061 (2)0.7862 (15)0.3176 (6)0.059 (5)0.228 (6)
H3B0.00680.73230.33240.071*0.228 (6)
C12B0.067 (4)0.763 (2)0.2495 (8)0.109 (13)0.228 (6)
H12D0.17760.79960.23590.164*0.228 (6)
H12E0.05570.78490.22510.164*0.228 (6)
H12F0.08470.68920.24410.164*0.228 (6)
C13B0.059 (3)0.8810 (14)0.3249 (9)0.078 (6)0.228 (6)
H13D0.06710.89210.36830.118*0.228 (6)
H13E0.19160.87230.30240.118*0.228 (6)
H13F0.00360.94020.30850.118*0.228 (6)
Cl21.62273 (11)0.56840 (6)0.24890 (4)0.0702 (3)
O41.5678 (6)0.5285 (3)0.18955 (14)0.1317 (11)
O51.5772 (4)0.4944 (2)0.29410 (13)0.1029 (9)
O61.8348 (4)0.5793 (3)0.25838 (18)0.1327 (12)
O71.5414 (6)0.6642 (3)0.25755 (16)0.1554 (15)
H11.365 (5)0.491 (3)0.3362 (15)0.081 (10)*
H1A0.955 (5)0.544 (2)0.3857 (14)0.107 (13)*
H2A0.501 (4)0.601 (2)0.4705 (13)0.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.2476 (16)0.0511 (5)0.1406 (10)0.0012 (7)0.0861 (10)0.0201 (5)
O10.0726 (13)0.0608 (12)0.0946 (15)0.0003 (10)0.0425 (12)0.0074 (10)
O20.0703 (12)0.0647 (12)0.0842 (14)0.0021 (9)0.0365 (11)0.0226 (10)
O30.0708 (12)0.0570 (11)0.0813 (13)0.0003 (9)0.0340 (10)0.0185 (9)
N10.0588 (13)0.0515 (13)0.0598 (13)0.0011 (10)0.0205 (11)0.0115 (10)
C10.0622 (15)0.0564 (15)0.0465 (13)0.0016 (12)0.0105 (12)0.0009 (11)
C20.0611 (15)0.0497 (14)0.0460 (13)0.0003 (11)0.0094 (12)0.0019 (11)
C30.089 (2)0.0538 (16)0.0597 (16)0.0027 (14)0.0243 (15)0.0055 (13)
C40.136 (3)0.0487 (17)0.0644 (18)0.0009 (17)0.030 (2)0.0056 (13)
C50.120 (3)0.0584 (18)0.0604 (17)0.0236 (18)0.0167 (18)0.0043 (14)
C60.0768 (19)0.0693 (19)0.0543 (15)0.0127 (15)0.0123 (14)0.0092 (14)
C70.0443 (12)0.0567 (15)0.0457 (12)0.0036 (11)0.0073 (10)0.0086 (11)
C80.0474 (13)0.0581 (14)0.0444 (13)0.0010 (11)0.0066 (11)0.0090 (11)
N20.0482 (12)0.0598 (14)0.0583 (13)0.0049 (10)0.0139 (10)0.0147 (11)
C9A0.055 (4)0.053 (3)0.065 (3)0.014 (2)0.015 (2)0.015 (2)
C10A0.057 (2)0.056 (2)0.073 (3)0.0112 (17)0.009 (2)0.001 (2)
C11A0.060 (2)0.050 (2)0.064 (2)0.0094 (17)0.0180 (18)0.0115 (17)
N3A0.045 (3)0.055 (3)0.081 (3)0.004 (2)0.011 (2)0.022 (2)
C12A0.078 (4)0.071 (4)0.067 (3)0.015 (3)0.004 (3)0.005 (3)
C13A0.071 (4)0.079 (4)0.124 (5)0.033 (3)0.015 (3)0.042 (3)
C9B0.042 (11)0.15 (2)0.102 (19)0.002 (12)0.004 (11)0.062 (15)
C10B0.067 (9)0.081 (10)0.070 (9)0.012 (7)0.030 (7)0.024 (8)
C11B0.071 (9)0.049 (8)0.073 (9)0.011 (7)0.010 (7)0.034 (7)
N3B0.048 (9)0.061 (11)0.067 (9)0.005 (7)0.007 (6)0.037 (7)
C12B0.15 (2)0.10 (2)0.076 (14)0.075 (18)0.012 (13)0.003 (12)
C13B0.070 (13)0.057 (10)0.115 (15)0.032 (10)0.034 (12)0.037 (10)
Cl20.0760 (5)0.0676 (5)0.0745 (5)0.0045 (3)0.0358 (4)0.0035 (3)
O40.178 (3)0.127 (3)0.0937 (19)0.032 (2)0.032 (2)0.0124 (18)
O50.0856 (16)0.113 (2)0.119 (2)0.0062 (14)0.0467 (15)0.0427 (16)
O60.0826 (17)0.139 (3)0.188 (3)0.0109 (17)0.0595 (19)0.024 (2)
O70.220 (4)0.114 (3)0.148 (3)0.087 (3)0.081 (3)0.015 (2)
Geometric parameters (Å, °) top
Cl1—C41.733 (3)N3A—C13A1.487 (6)
O1—C11.357 (3)N3A—C12A1.507 (7)
O1—H10.89 (4)N3A—H3A0.9100
O2—C71.220 (3)C12A—H12A0.9600
O3—C81.221 (3)C12A—H12B0.9600
N1—C21.396 (3)C12A—H12C0.9600
N1—C71.329 (3)C13A—H13A0.9600
N2—C81.321 (3)C13A—H13B0.9600
C7—C81.527 (4)C13A—H13C0.9600
N1—H1A0.857 (10)C9B—C10B1.537 (10)
C1—C61.372 (4)C9B—H9C0.9700
C1—C21.399 (4)C9B—H9D0.9700
C2—C31.377 (4)C10B—C11B1.508 (7)
C3—C41.392 (4)C10B—H10C0.9700
C3—H30.9300C10B—H10D0.9700
C4—C51.366 (5)C11B—N3B1.483 (10)
C5—C61.379 (4)C11B—H11C0.9700
C5—H50.9300C11B—H11D0.9700
C6—H60.9300N3B—C13B1.480 (10)
N2—C9B1.447 (10)N3B—C12B1.513 (10)
N2—C9A1.448 (4)N3B—H3B0.9100
N2—H2A0.88 (3)C12B—H12D0.9600
C9A—C10A1.535 (6)C12B—H12E0.9600
C9A—H9A0.9700C12B—H12F0.9600
C9A—H9B0.9700C13B—H13D0.9600
C10A—C11A1.501 (4)C13B—H13E0.9600
C10A—H10A0.9700C13B—H13F0.9600
C10A—H10B0.9700Cl2—O71.369 (3)
C11A—N3A1.489 (6)Cl2—O41.383 (3)
C11A—H11A0.9700Cl2—O61.422 (3)
C11A—H11B0.9700Cl2—O51.428 (2)
C1—O1—H1110 (2)H11A—C11A—H11B108.0
C7—N1—C2129.8 (2)C13A—N3A—C11A112.4 (4)
C7—N1—H1A108 (3)C13A—N3A—C12A111.4 (5)
C2—N1—H1A121 (3)C11A—N3A—C12A111.8 (5)
O1—C1—C6124.0 (3)C13A—N3A—H3A107.0
O1—C1—C2115.4 (2)C11A—N3A—H3A107.0
C6—C1—C2120.5 (3)C12A—N3A—H3A107.0
C3—C2—N1124.0 (2)N2—C9B—C10B117.7 (11)
C3—C2—C1119.8 (2)N2—C9B—H9C107.9
N1—C2—C1116.2 (2)C10B—C9B—H9C107.9
C2—C3—C4118.4 (3)N2—C9B—H9D107.9
C2—C3—H3120.8C10B—C9B—H9D107.9
C4—C3—H3120.8H9C—C9B—H9D107.2
C5—C4—C3121.9 (3)C11B—C10B—C9B112.3 (12)
C5—C4—Cl1119.8 (3)C11B—C10B—H10C109.2
C3—C4—Cl1118.3 (3)C9B—C10B—H10C109.2
C4—C5—C6119.4 (3)C11B—C10B—H10D109.2
C4—C5—H5120.3C9B—C10B—H10D109.2
C6—C5—H5120.3H10C—C10B—H10D107.9
C1—C6—C5119.9 (3)N3B—C11B—C10B114.2 (10)
C1—C6—H6120.0N3B—C11B—H11C108.7
C5—C6—H6120.0C10B—C11B—H11C108.7
O2—C7—N1125.7 (2)N3B—C11B—H11D108.7
O2—C7—C8122.1 (2)C10B—C11B—H11D108.7
N1—C7—C8112.2 (2)H11C—C11B—H11D107.6
O3—C8—N2125.2 (2)C13B—N3B—C11B116.1 (13)
O3—C8—C7120.9 (2)C13B—N3B—C12B111.0 (12)
N2—C8—C7113.8 (2)C11B—N3B—C12B110.6 (12)
C8—N2—C9B124.0 (14)C13B—N3B—H3B106.1
C8—N2—C9A123.2 (4)C11B—N3B—H3B106.1
C8—N2—H2A113.7 (18)C12B—N3B—H3B106.1
C9B—N2—H2A122 (2)N3B—C12B—H12D109.5
C9A—N2—H2A120.9 (18)N3B—C12B—H12E109.5
N2—C9A—C10A107.6 (3)H12D—C12B—H12E109.5
N2—C9A—H9A110.2N3B—C12B—H12F109.5
C10A—C9A—H9A110.2H12D—C12B—H12F109.5
N2—C9A—H9B110.2H12E—C12B—H12F109.5
C10A—C9A—H9B110.2N3B—C13B—H13D109.5
H9A—C9A—H9B108.5N3B—C13B—H13E109.5
C11A—C10A—C9A112.9 (3)H13D—C13B—H13E109.5
C11A—C10A—H10A109.0N3B—C13B—H13F109.5
C9A—C10A—H10A109.0H13D—C13B—H13F109.5
C11A—C10A—H10B109.0H13E—C13B—H13F109.5
C9A—C10A—H10B109.0O7—Cl2—O4113.6 (2)
H10A—C10A—H10B107.8O7—Cl2—O6107.9 (3)
N3A—C11A—C10A111.6 (3)O4—Cl2—O6107.4 (2)
N3A—C11A—H11A109.3O7—Cl2—O5111.86 (19)
C10A—C11A—H11A109.3O4—Cl2—O5109.62 (19)
N3A—C11A—H11B109.3O6—Cl2—O5106.11 (18)
C10A—C11A—H11B109.3
C7—N1—C2—C1172.9 (3)O2—C7—C8—N24.1 (4)
C7—N1—C2—C37.4 (4)N1—C7—C8—N2176.1 (2)
O1—C1—C2—C3178.7 (2)O3—C8—N2—C9B6.1 (9)
C6—C1—C2—C30.6 (4)C7—C8—N2—C9B173.8 (8)
O1—C1—C2—N11.1 (3)O3—C8—N2—C9A9.3 (5)
C6—C1—C2—N1179.7 (2)C7—C8—N2—C9A170.8 (3)
N1—C2—C3—C4179.5 (3)C8—N2—C9A—C10A86.1 (6)
C1—C2—C3—C40.8 (4)C9B—N2—C9A—C10A176 (8)
C2—C3—C4—C50.7 (5)N2—C9A—C10A—C11A172.9 (4)
C2—C3—C4—Cl1178.9 (2)C9A—C10A—C11A—N3A170.2 (5)
C3—C4—C5—C60.4 (5)C10A—C11A—N3A—C13A172.5 (5)
Cl1—C4—C5—C6179.2 (2)C10A—C11A—N3A—C12A61.4 (6)
O1—C1—C6—C5178.9 (3)C8—N2—C9B—C10B117.6 (19)
C2—C1—C6—C50.3 (4)C9A—N2—C9B—C10B27 (5)
C4—C5—C6—C10.2 (5)N2—C9B—C10B—C11B73 (3)
C2—N1—C7—O20.1 (4)C9B—C10B—C11B—N3B169.9 (13)
C2—N1—C7—C8179.9 (2)C10B—C11B—N3B—C13B65.8 (18)
O2—C7—C8—O3175.8 (2)C10B—C11B—N3B—C12B166.5 (16)
N1—C7—C8—O34.0 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.89 (4)1.80 (4)2.693 (3)174 (3)
N2—H2A···O2i0.88 (3)2.12 (3)2.905 (3)149 (2)
N3A—H3A···O3ii0.912.042.814 (6)142.
N3B—H3B···O3ii0.912.132.905 (18)143.
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.89 (4)1.80 (4)2.693 (3)174 (3)
N2—H2A···O2i0.88 (3)2.12 (3)2.905 (3)149 (2)
N3A—H3A···O3ii0.912.042.814 (6)142.
N3B—H3B···O3ii0.912.132.905 (18)143.
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.
Acknowledgements top

This project was supported by the Natural Science Foundation of China (No. 21071133) and the Natural Science Foundation of Qingdao City (No. 09–1-3–73-jch)

references
References top

Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Li, X.-W., Jiang, M., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2010). J. Coord. Chem. 63, 1582–1596.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tao, R.-J., Zang, S.-Q., Mei, C.-Z., Wang, Q.-L., Lou, B.-Y., Niu, J.-Y., Cheng, Y.-X. & Liao, D.-Z. (2003). J. Cluster Sci. 14, 459–469.