supplementary materials


zq2141 scheme

Acta Cryst. (2012). E68, m4    [ doi:10.1107/S1600536811051270 ]

Bis{2-[(pyridin-4-yl-[kappa]N)sulfanyl]pyrazine}silver(I) tetrafluoridoborate

Z.-J. Wang

Abstract top

In the title mononuclear complex, [Ag(C9H7N3S)2]BF4, the AgI ion adopts a virtually linear coordination geometry [N-Ag-N = 178.06 (11)°] with the two ligands bound to the metal atom via the pyridine N atoms. The metal-coordinated pyridine rings are almost coplanar, making a dihedral angle of 1.5 (2)°, while the two pendent pyrazine rings are arranged on the same side of the N-Ag-N line. Along the a axis, the mononuclear coordination units are stacked with [pi]-[pi] interactions between the pyridine rings [centroid-centroid distance = 3.569 (4) Å], leading to infinite chains. The chains are interconnected through intermolecular N(pyrazine)...[pi](pyrazine) interactions forming layers parallel to the ab plane [N...centroid = 3.268 (5) Å]. These layers are further stacked along the c-axis direction, furnishing a three-dimensional supramolecular framework with the tetrafluoridoborate anions embedded within the interstices.

Comment top

Chalcogenobispyridines and derivates were widely used as versatile building blocks for supramolecular assembly (Baradello et al., 2004; Dunne et al., 1997). The ligand, such as the di-2-pyridyl sulfide and its N-positional isomers, endowed with the rotatable C(sp2)—S bond and a variable C(sp2)—S—C(sp2) angle (about 100°), exhibits flexible ligation modes in construction of diverse coordination motifs with unusual properties (Jung et al., 2001; Jung et al., 2003). Herein, we report a new silver complex derived from the 2-(pyridin-4-ylsulfanyl)pyrazine ligand.

In the mononuclear complex, [Ag(C9H7N3S)2]+.BF4-, the siver(I) ion adopts a linear coordination geometry [N3—Ag1—N4 = 178.06 (1)°] with the two ligands bound to the metal center via the 4-pyridyl N atoms (Fig. 1). The two pyridyl rings bound to AgI are almost coplanar, while the two pendent pyrazinyl rings are arranged on the same side of the N—Ag—N line. The dihedral angle between the mean planes of the two pendent pyrazinyl rings is 48.89 (1)°. Along the a axis, the mononuclear units are stacked with ππ interactions between the 4-pyridyl rings [Cg1···Cg2i 3.569 (4) Å; symmetry code: (i) = x+1, y, z] leading to infinite chains (Cg1 = C5-C6-C7-N3-C8-C9; Cg2 = N4-C10-C11-C12-C13-C14). The formed chains interconnect through intermolecular N(pyrazinyl)···π(pyrazinyl) interactions forming layers parallel to the ab plane (Fig. 2). For the N(pyrazinyl)···π(pyrazinyl) contact, the N6···Cg3ii distance equals 3.268 (5) Å (Cg3 = N1-C1-C2-N2-C3-C4; (ii) = -x, -y, -z) which is comparable to that N(pyrazinyl)···centroid(pyrazinyl) of 3.05 Å reported by Black et al. (2007) in {[Ni(L)(NO3)2]} (L = bis(2-pyrazylmethyl)sulfide). These distances are shorter than the van der Waals separation of 3.40 Å on the basis of Pauling's values for the half thickness of phenyl rings (1.85 Å) (Malone et al., 1997) and the van der Waals radius of N (1.55 Å) (Bondi, 1964). The almost parallel layers are further stacked along the c direction to furnish a three-dimensional supramolecular framework with the tetrafluoridoborate anions embedded within the interstices (Fig. 3).

Related literature top

For metal complexes with chalcogenobispyridines and derivates, see: Baradello et al. (2004); Dunne et al. (1997). For the crystal structures of di-2-pyridyl sulfide and its N-positional isomer complexes, see: Jung et al. (2001, 2003). For the N(pyrazinyl)···centroid(pyrazinyl) distance in {[Ni(L)(NO3)2]} (L = bis(2-pyrazylmethyl)sulfide), see: Black et al. (2007); For van der Waals radii, see: Bondi (1964) and for the half thickness of phenyl rings, see: Malone et al. (1997).

Experimental top

4-Pyridyl-2-pyrazinyl sulfide was synthesized by reacting 2-chloropyrazine (0.6 g, 5.2 mmol) with sodium pyridine-4-thiolate (5 mmol) in 40 ml methanol. The mixture was refluxed with stirring for 10 hours under the protection of N2. After filtration and concentration in vacuo, the obtained crude product was further purified by chromatography on silica gel using ether acetate/dichloromethane (1:3) as the eluent, giving 0.444 g of yellow powder of 4-pyridyl-2-pyrazinyl sulfide in 47% yield. Reaction of 4-pyridyl-2-pyrazinyl sulfide (19 mg, 0.1 mmol) and AgBF4 (20 mg, 0.1 mmol) in 4 ml methanol with stirring at room temperature for 3 hours. The obtained clear solution was filtrated, and the filtration was left evaporation in air. After about one week, the block-like crystals of the title complex were deposited (18.1 mg, yield 63%).

Refinement top

The H atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title complex. Displacement ellipsoids are drawn at the 50% probability level, while the H atoms are shown as rods of arbitrary radius.
[Figure 2] Fig. 2. The ππ stacking and N···π(pyrazinyl) interactions between the mononuclear units, which are respectively shown as thick red-dashed lines and thin blue-dashed lines.
[Figure 3] Fig. 3. The packing structure of the title complex. The AgI ions are shown as purple balls, while the B-F bonds are shown as thick bond mode for clarity.
Bis{2-[(pyridin-4-yl-κN)sulfanyl]pyrazine}silver(I) tetrafluoridoborate top
Crystal data top
[Ag(C9H7N3S)2]BF4Z = 4
Mr = 573.15F(000) = 1136
Monoclinic, P21/nDx = 1.817 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.2232 (2) ŵ = 1.22 mm1
b = 16.4826 (3) ÅT = 296 K
c = 17.6098 (4) ÅBlock, yellow
β = 91.666 (1)°0.40 × 0.30 × 0.20 mm
V = 2095.69 (8) Å3
Data collection top
'Bruker SMART APEXII CCD area-detector'
diffractometer
3597 independent reflections
Radiation source: fine-focus sealed tube3215 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.616, Tmax = 0.746k = 1919
14794 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0584P)2 + 2.8465P] P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Ag(C9H7N3S)2]BF4V = 2095.69 (8) Å3
Mr = 573.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2232 (2) ŵ = 1.22 mm1
b = 16.4826 (3) ÅT = 296 K
c = 17.6098 (4) Å0.40 × 0.30 × 0.20 mm
β = 91.666 (1)°
Data collection top
'Bruker SMART APEXII CCD area-detector'
diffractometer
3597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3215 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.746Rint = 0.028
14794 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.40 e Å3
S = 1.11Δρmin = 0.62 e Å3
3597 reflectionsAbsolute structure: ?
289 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.49553 (4)0.746244 (18)0.040102 (19)0.04882 (15)
S11.31192 (14)0.55322 (8)0.04143 (6)0.0556 (3)
S20.31897 (14)0.94030 (8)0.04687 (6)0.0554 (3)
N11.3844 (4)0.62555 (19)0.1758 (2)0.0456 (8)
N21.5853 (5)0.4934 (2)0.2314 (2)0.0557 (9)
N30.7552 (4)0.68164 (18)0.04124 (17)0.0392 (7)
N40.2344 (4)0.81040 (18)0.04305 (18)0.0409 (7)
N50.3990 (4)0.85798 (19)0.1733 (2)0.0459 (8)
N60.5935 (5)0.9876 (2)0.2337 (2)0.0582 (10)
C11.4578 (6)0.6243 (3)0.2450 (3)0.0532 (10)
H1A1.43930.66850.27670.064*
C21.5609 (6)0.5599 (3)0.2723 (3)0.0576 (11)
H2A1.61500.56300.32080.069*
C31.5056 (6)0.4919 (2)0.1643 (2)0.0482 (9)
H3A1.51640.44560.13460.058*
C41.4040 (5)0.5577 (2)0.1353 (2)0.0387 (8)
C51.0957 (5)0.6030 (2)0.0462 (2)0.0378 (8)
C61.0216 (6)0.6326 (3)0.0213 (2)0.0499 (10)
H6A1.08620.62760.06600.060*
C70.8514 (6)0.6697 (3)0.0217 (2)0.0487 (10)
H7A0.80050.68740.06790.058*
C80.8306 (5)0.6540 (3)0.1058 (2)0.0458 (9)
H8A0.76670.66260.15020.055*
C90.9972 (5)0.6135 (3)0.1114 (2)0.0479 (10)
H9A1.04210.59380.15790.057*
C100.1515 (6)0.8409 (3)0.0177 (3)0.0569 (11)
H10A0.21100.83690.06370.068*
C110.0205 (6)0.8788 (3)0.0173 (2)0.0546 (11)
H11A0.07790.89670.06220.066*
C120.1045 (5)0.8893 (2)0.0520 (2)0.0398 (8)
C130.0160 (5)0.8602 (3)0.1160 (2)0.0472 (9)
H13A0.06760.86710.16340.057*
C140.1513 (5)0.8204 (3)0.1094 (2)0.0462 (9)
H14A0.20890.79970.15320.055*
C150.4147 (5)0.9284 (2)0.1376 (2)0.0373 (8)
C160.4753 (6)0.8546 (3)0.2415 (3)0.0560 (11)
H16A0.46090.80770.27030.067*
C170.5735 (6)0.9177 (3)0.2701 (3)0.0580 (11)
H17A0.62830.91150.31690.070*
C180.5097 (6)0.9934 (2)0.1678 (2)0.0457 (9)
H18A0.51481.04220.14120.055*
B10.4920 (7)0.7584 (3)0.1658 (3)0.0479 (11)
F10.5771 (6)0.8120 (2)0.1155 (2)0.0970 (11)
F20.4070 (6)0.7015 (2)0.1210 (2)0.0977 (11)
F30.3676 (6)0.7987 (3)0.2082 (3)0.1304 (16)
F40.6212 (6)0.7205 (3)0.2054 (3)0.1233 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0314 (2)0.0524 (2)0.0627 (2)0.01446 (12)0.00139 (14)0.00343 (13)
S10.0364 (5)0.0807 (8)0.0494 (6)0.0263 (5)0.0019 (4)0.0044 (5)
S20.0389 (5)0.0792 (8)0.0483 (6)0.0271 (5)0.0076 (4)0.0090 (5)
N10.0355 (17)0.0401 (17)0.061 (2)0.0034 (13)0.0009 (15)0.0044 (15)
N20.053 (2)0.057 (2)0.056 (2)0.0147 (17)0.0056 (17)0.0105 (17)
N30.0299 (15)0.0427 (17)0.0450 (17)0.0059 (12)0.0009 (13)0.0034 (13)
N40.0309 (15)0.0422 (17)0.0496 (18)0.0059 (12)0.0039 (13)0.0010 (13)
N50.0373 (17)0.0398 (17)0.061 (2)0.0029 (13)0.0068 (15)0.0034 (15)
N60.057 (2)0.061 (2)0.057 (2)0.0122 (17)0.0154 (18)0.0127 (18)
C10.045 (2)0.050 (2)0.064 (3)0.0002 (18)0.001 (2)0.0068 (19)
C20.048 (2)0.071 (3)0.054 (3)0.004 (2)0.0018 (19)0.004 (2)
C30.046 (2)0.042 (2)0.057 (2)0.0077 (17)0.0040 (18)0.0045 (18)
C40.0239 (16)0.042 (2)0.051 (2)0.0038 (14)0.0030 (15)0.0082 (16)
C50.0277 (17)0.0403 (19)0.045 (2)0.0046 (14)0.0009 (14)0.0010 (15)
C60.042 (2)0.068 (3)0.040 (2)0.0146 (19)0.0011 (16)0.0026 (18)
C70.040 (2)0.065 (3)0.041 (2)0.0171 (18)0.0053 (16)0.0010 (18)
C80.0258 (17)0.067 (3)0.045 (2)0.0037 (17)0.0081 (15)0.0042 (18)
C90.0332 (19)0.067 (3)0.044 (2)0.0065 (17)0.0023 (16)0.0182 (18)
C100.052 (2)0.066 (3)0.054 (2)0.023 (2)0.023 (2)0.010 (2)
C110.051 (2)0.072 (3)0.041 (2)0.026 (2)0.0096 (18)0.015 (2)
C120.0314 (18)0.0379 (19)0.050 (2)0.0032 (14)0.0055 (15)0.0012 (15)
C130.0333 (19)0.067 (3)0.041 (2)0.0074 (18)0.0025 (15)0.0054 (18)
C140.0289 (18)0.064 (2)0.046 (2)0.0058 (17)0.0004 (15)0.0009 (18)
C150.0248 (16)0.0421 (19)0.0450 (19)0.0033 (14)0.0010 (14)0.0050 (15)
C160.048 (2)0.053 (3)0.067 (3)0.0004 (19)0.008 (2)0.014 (2)
C170.052 (3)0.075 (3)0.048 (2)0.009 (2)0.0100 (19)0.002 (2)
C180.042 (2)0.042 (2)0.054 (2)0.0072 (16)0.0028 (17)0.0039 (17)
B10.055 (3)0.053 (3)0.036 (2)0.010 (2)0.002 (2)0.0037 (18)
F10.132 (3)0.073 (2)0.085 (2)0.0111 (19)0.030 (2)0.0048 (16)
F20.129 (3)0.073 (2)0.093 (2)0.013 (2)0.034 (2)0.0027 (17)
F30.127 (4)0.134 (4)0.127 (4)0.035 (3)0.057 (3)0.029 (3)
F40.124 (3)0.130 (3)0.119 (3)0.032 (3)0.061 (3)0.021 (3)
Geometric parameters (Å, °) top
Ag1—N32.156 (3)C5—C91.380 (5)
Ag1—N42.165 (3)C6—C71.373 (6)
S1—C41.765 (4)C6—H6A0.9300
S1—C51.768 (3)C7—H7A0.9300
S2—C121.763 (4)C8—C91.378 (5)
S2—C151.770 (4)C8—H8A0.9300
N1—C11.315 (6)C9—H9A0.9300
N1—C41.337 (5)C10—C111.391 (6)
N2—C31.300 (6)C10—H10A0.9300
N2—C21.326 (6)C11—C121.389 (5)
N3—C81.327 (5)C11—H11A0.9300
N3—C71.340 (5)C12—C131.366 (6)
N4—C101.311 (5)C13—C141.383 (5)
N4—C141.339 (5)C13—H13A0.9300
N5—C151.324 (5)C14—H14A0.9300
N5—C161.336 (6)C15—C181.386 (5)
N6—C171.324 (6)C16—C171.364 (6)
N6—C181.328 (5)C16—H16A0.9300
C1—C21.376 (6)C17—H17A0.9300
C1—H1A0.9300C18—H18A0.9300
C2—H2A0.9300B1—F31.330 (6)
C3—C41.397 (5)B1—F41.337 (6)
C3—H3A0.9300B1—F21.380 (6)
C5—C61.378 (5)B1—F11.382 (6)
N3—Ag1—N4178.06 (11)C8—C9—C5118.1 (4)
C4—S1—C5104.22 (17)C8—C9—H9A120.9
C12—S2—C15105.47 (18)C5—C9—H9A120.9
C1—N1—C4115.8 (3)N4—C10—C11123.6 (4)
C3—N2—C2116.6 (4)N4—C10—H10A118.2
C8—N3—C7116.7 (3)C11—C10—H10A118.2
C8—N3—Ag1120.8 (2)C12—C11—C10118.3 (4)
C7—N3—Ag1122.5 (3)C12—C11—H11A120.9
C10—N4—C14117.4 (3)C10—C11—H11A120.9
C10—N4—Ag1123.0 (3)C13—C12—C11118.4 (3)
C14—N4—Ag1119.6 (3)C13—C12—S2126.8 (3)
C15—N5—C16115.5 (3)C11—C12—S2114.8 (3)
C17—N6—C18116.1 (4)C12—C13—C14119.1 (4)
N1—C1—C2122.4 (4)C12—C13—H13A120.5
N1—C1—H1A118.8C14—C13—H13A120.5
C2—C1—H1A118.8N4—C14—C13123.1 (4)
N2—C2—C1121.8 (4)N4—C14—H14A118.4
N2—C2—H2A119.1C13—C14—H14A118.4
C1—C2—H2A119.1N5—C15—C18122.2 (3)
N2—C3—C4122.1 (4)N5—C15—S2119.7 (3)
N2—C3—H3A118.9C18—C15—S2118.1 (3)
C4—C3—H3A118.9N5—C16—C17122.2 (4)
N1—C4—C3121.1 (4)N5—C16—H16A118.9
N1—C4—S1119.5 (3)C17—C16—H16A118.9
C3—C4—S1119.3 (3)N6—C17—C16122.3 (4)
C6—C5—C9118.4 (3)N6—C17—H17A118.8
C6—C5—S1116.4 (3)C16—C17—H17A118.8
C9—C5—S1125.1 (3)N6—C18—C15121.5 (4)
C7—C6—C5119.2 (4)N6—C18—H18A119.3
C7—C6—H6A120.4C15—C18—H18A119.3
C5—C6—H6A120.4F3—B1—F4114.3 (5)
N3—C7—C6123.1 (4)F3—B1—F2110.8 (5)
N3—C7—H7A118.4F4—B1—F2108.0 (4)
C6—C7—H7A118.4F3—B1—F1108.7 (4)
N3—C8—C9124.3 (3)F4—B1—F1109.2 (5)
N3—C8—H8A117.8F2—B1—F1105.4 (4)
C9—C8—H8A117.8
C4—N1—C1—C24.9 (6)C14—N4—C10—C113.5 (7)
C3—N2—C2—C10.5 (7)Ag1—N4—C10—C11176.8 (4)
N1—C1—C2—N23.1 (7)N4—C10—C11—C123.9 (8)
C2—N2—C3—C42.0 (6)C10—C11—C12—C131.4 (7)
C1—N1—C4—C33.4 (5)C10—C11—C12—S2178.4 (4)
C1—N1—C4—S1179.6 (3)C15—S2—C12—C1311.0 (4)
N2—C3—C4—N10.1 (6)C15—S2—C12—C11169.1 (3)
N2—C3—C4—S1176.1 (3)C11—C12—C13—C141.1 (6)
C5—S1—C4—N140.5 (3)S2—C12—C13—C14179.1 (3)
C5—S1—C4—C3143.3 (3)C10—N4—C14—C130.6 (6)
C4—S1—C5—C6158.8 (3)Ag1—N4—C14—C13179.6 (3)
C4—S1—C5—C921.7 (4)C12—C13—C14—N41.6 (7)
C9—C5—C6—C71.5 (7)C16—N5—C15—C182.2 (6)
S1—C5—C6—C7178.1 (3)C16—N5—C15—S2180.0 (3)
C8—N3—C7—C61.4 (6)C12—S2—C15—N540.4 (3)
Ag1—N3—C7—C6176.3 (3)C12—S2—C15—C18141.7 (3)
C5—C6—C7—N32.7 (7)C15—N5—C16—C174.3 (6)
C7—N3—C8—C91.1 (6)C18—N6—C17—C161.0 (7)
Ag1—N3—C8—C9178.8 (3)N5—C16—C17—N62.8 (8)
N3—C8—C9—C52.1 (7)C17—N6—C18—C153.0 (7)
C6—C5—C9—C80.7 (6)N5—C15—C18—N61.4 (6)
S1—C5—C9—C8179.7 (3)S2—C15—C18—N6176.4 (3)
Acknowledgements top

The authors are grateful for financial support from the Beijing Municipal Education Commission.

references
References top

Baradello, L., Lo Schiavo, S., Nicolò, F., Alibrandi, G., Tresoldi, G. & Lanza, S. (2004). Eur. J. Inorg. Chem. pp. 3358–3369.

Black, C. A., Hanton, L. R. & Spicer, M. D. (2007). Inorg. Chem. 46, 3669–3679.

Bondi, A. (1964). J. Phys. Chem. 68, 441–451.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dunne, S. J., Summers, L. A. & von Nagy-Felsobuki, E. I. (1997). Coord. Chem. Rev. 165, 1–92.

Jung, O.-S., Kim, Y. J., Lee, Y.-A., Chae, H. K., Jang, H. G. & Hong, J. (2001). Inorg. Chem. 40, 2105–2110.

Jung, O.-S., Kim, Y. J., Lee, Y.-A., Park, K.-M. & Lee, S. S. (2003). Inorg. Chem. 42, 844–850.

Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J Chem. Soc. Faraday Trans. 93, 3429–3436.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.