supplementary materials


zq2146 scheme

Acta Cryst. (2012). E68, o154    [ doi:10.1107/S1600536811053001 ]

(E)-3-(2,4-Dimethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one

J. Wu, J. Qiu, X. Wu, S. Yang and Y. Liu

Abstract top

In the title chalcone derivative, C20H22O6, the dihedral angle between the mean planes of the benzene rings is 15.77 (6)°. The H atoms of the central C=C double bond are in a trans configuration. There are a number of C-H...O interactions and a C-H...[pi] interaction present in the crystal structure.

Comment top

Chalcones are characterized by possessing two aromatic rings linked by a three-carbon α,β-unsaturated carbonyl system (Wu et al., 2010; Wu et al., 2011). Natural chalcones have many kinds of active biological properties such as antiinflammatory, antitumoral, antimalarial, antileishmanial, Antibacterial. Investigations have demonstrated that synthetical chalcones have the same biological properties as natural chalcones. (Wu et al. 2010; Wu et al. 2011; Nielsen et al. 2005). In order to study its anticancer agents, we have synthesized the title chalcone derivative and herein its crystal structure is reported. The crystal structure parameters are similar to those found in some analogous structures reported in the literature (Peng et al., 2010; Huang et al., 2010).The dihedral angle between the mean planes of the phenyl rings is 15.77 (6)°. The H atoms of the central C=C double bond are in a trans configuration. In the crystal structure, there are many weak C–H···O intermolecular contacts (Table 1) but no classic hydrogen bonds between the molecules (Spek, 2009).

Related literature top

For related structures, see: Wu et al. (2010, 2011); Huang et al. (2010); Peng et al. (2010). For applications of chalcones, see: Wu et al. (2010, 2011); Nielsen et al. (2005). For the hydrogen-bond analysis, see: Spek (2009).

Experimental top

The title compound was synthesized by Claisen-Schmidt condensation between 2,4-dimethoxybenzaldehyde and 1-(3,4,5-trimethoxyphenyl)ethanone. 2,4-Dimethoxybenzaldehyde (1 mmol) and 1-(3,4,5-trimethoxyphenyl)ethanone (1 mmol) were dissolved in ehanol (20 ml). The reaction temperature was controlled at 283 K, and then NaOH (20%, 3 drops) was added. The reaction was monitored by thin-layer chromatography. 20 ml H2O was added 5 h later and the yellow solid precipitated. It was washed with a mixture of water and cold ethanol, and dried (yield: 70%; mp 125.7–127.7°C). Single crystals of the title compound were obtained by recrystallization from a solution of CH3CH2OH / CH2Cl2 at 293 K.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis.
(E)-3-(2,4-Dimethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C20H22O6F(000) = 760
Mr = 358.38Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2728 reflections
a = 8.3111 (11) Åθ = 5.2–49.2°
b = 13.8493 (17) ŵ = 0.10 mm1
c = 15.887 (2) ÅT = 293 K
β = 101.588 (2)°Prismatic, green
V = 1791.4 (4) Å30.40 × 0.37 × 0.31 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2452 reflections with I > 2σ(I)
graphiteRint = 0.045
phi and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 109
Tmin = 0.651, Tmax = 1.000k = 1715
9663 measured reflectionsl = 1619
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3512 reflectionsΔρmax = 0.20 e Å3
241 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (15)
Crystal data top
C20H22O6V = 1791.4 (4) Å3
Mr = 358.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3111 (11) ŵ = 0.10 mm1
b = 13.8493 (17) ÅT = 293 K
c = 15.887 (2) Å0.40 × 0.37 × 0.31 mm
β = 101.588 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2452 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 1.000Rint = 0.045
9663 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.20 e Å3
S = 0.97Δρmin = 0.19 e Å3
3512 reflectionsAbsolute structure: ?
241 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3078 (3)0.60842 (10)0.03257 (9)0.0969 (7)
O20.45908 (16)0.73756 (8)0.24726 (7)0.0510 (4)
O30.34229 (18)0.58134 (9)0.49898 (7)0.0629 (4)
O40.20538 (17)0.38935 (8)0.28996 (7)0.0549 (4)
O50.11723 (15)0.21987 (8)0.23292 (7)0.0487 (3)
O60.07241 (18)0.19802 (8)0.07336 (8)0.0614 (4)
C10.2622 (3)0.53394 (12)0.00427 (11)0.0532 (5)
C20.2513 (2)0.52558 (12)0.08616 (11)0.0494 (5)
H20.19940.47190.10370.059*
C30.3124 (2)0.59147 (12)0.14391 (11)0.0478 (5)
H30.35970.64500.12310.057*
C40.3155 (2)0.59116 (11)0.23532 (10)0.0397 (4)
C50.3969 (2)0.66447 (11)0.28813 (10)0.0395 (4)
C60.4097 (2)0.66259 (11)0.37629 (10)0.0438 (4)
H60.46700.71090.41040.053*
C70.3368 (2)0.58853 (12)0.41331 (11)0.0454 (4)
C80.2505 (2)0.51675 (12)0.36245 (12)0.0495 (5)
H80.19930.46770.38720.059*
C90.2416 (2)0.51894 (11)0.27580 (11)0.0456 (5)
H90.18390.47030.24230.055*
C100.2178 (2)0.44929 (11)0.06312 (10)0.0441 (5)
C110.2324 (2)0.46042 (11)0.14787 (11)0.0451 (4)
H110.26750.51920.16620.054*
C120.1956 (2)0.38529 (11)0.20524 (10)0.0428 (4)
C130.1453 (2)0.29723 (11)0.17775 (10)0.0407 (4)
C140.1279 (2)0.28626 (11)0.09326 (11)0.0436 (4)
C150.1647 (2)0.36210 (11)0.03595 (11)0.0468 (5)
H150.15380.35450.02080.056*
C160.4271 (3)0.65505 (15)0.55295 (12)0.0817 (8)
H16A0.54150.65340.55050.123*
H16B0.41470.64450.61100.123*
H16C0.38210.71690.53360.123*
C170.5458 (2)0.81254 (12)0.29860 (11)0.0517 (5)
H17A0.47510.84210.33210.078*
H17B0.58050.86010.26210.078*
H17C0.64020.78590.33630.078*
C180.2455 (3)0.47971 (13)0.32250 (12)0.0632 (6)
H18A0.16290.52630.31680.095*
H18B0.25080.47300.38200.095*
H18C0.35010.50100.29070.095*
C190.0442 (2)0.21605 (14)0.28238 (13)0.0635 (6)
H19A0.12040.20520.24520.095*
H19B0.05230.16430.32320.095*
H19C0.06970.27610.31230.095*
C200.0313 (3)0.18677 (15)0.00746 (13)0.0796 (7)
H20A0.12800.19430.05150.119*
H20B0.01410.12360.01150.119*
H20C0.04830.23470.01470.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.196 (2)0.0472 (8)0.0459 (9)0.0398 (10)0.0199 (10)0.0057 (6)
O20.0720 (9)0.0430 (7)0.0373 (7)0.0161 (6)0.0091 (6)0.0008 (5)
O30.1002 (12)0.0532 (8)0.0383 (7)0.0019 (7)0.0214 (7)0.0041 (6)
O40.0851 (10)0.0457 (7)0.0366 (7)0.0065 (6)0.0188 (6)0.0026 (5)
O50.0564 (8)0.0391 (6)0.0498 (7)0.0031 (6)0.0088 (6)0.0121 (5)
O60.0974 (11)0.0389 (7)0.0520 (8)0.0099 (7)0.0252 (7)0.0010 (6)
C10.0786 (14)0.0389 (10)0.0384 (10)0.0011 (9)0.0028 (9)0.0016 (8)
C20.0649 (13)0.0396 (9)0.0429 (10)0.0037 (9)0.0092 (9)0.0034 (8)
C30.0658 (13)0.0363 (9)0.0400 (10)0.0048 (8)0.0076 (8)0.0006 (7)
C40.0486 (11)0.0334 (8)0.0364 (9)0.0030 (7)0.0067 (8)0.0017 (7)
C50.0473 (10)0.0338 (8)0.0375 (9)0.0002 (7)0.0087 (8)0.0010 (7)
C60.0574 (12)0.0376 (9)0.0353 (9)0.0013 (8)0.0065 (8)0.0034 (7)
C70.0625 (12)0.0395 (9)0.0361 (10)0.0095 (8)0.0141 (8)0.0039 (7)
C80.0659 (13)0.0354 (9)0.0514 (11)0.0025 (8)0.0217 (9)0.0041 (8)
C90.0551 (12)0.0338 (9)0.0484 (11)0.0019 (8)0.0119 (9)0.0064 (7)
C100.0560 (12)0.0377 (9)0.0353 (9)0.0018 (8)0.0018 (8)0.0013 (7)
C110.0581 (12)0.0353 (9)0.0410 (10)0.0034 (8)0.0078 (8)0.0011 (7)
C120.0520 (11)0.0412 (9)0.0354 (9)0.0038 (8)0.0094 (8)0.0016 (7)
C130.0466 (11)0.0343 (9)0.0402 (10)0.0047 (7)0.0066 (8)0.0052 (7)
C140.0537 (11)0.0328 (9)0.0440 (10)0.0007 (8)0.0086 (8)0.0008 (7)
C150.0641 (13)0.0422 (10)0.0334 (9)0.0020 (9)0.0082 (8)0.0010 (7)
C160.138 (2)0.0694 (14)0.0348 (11)0.0064 (14)0.0103 (12)0.0023 (10)
C170.0619 (13)0.0421 (10)0.0515 (11)0.0131 (9)0.0125 (9)0.0037 (8)
C180.0934 (17)0.0537 (12)0.0456 (11)0.0055 (11)0.0211 (11)0.0058 (9)
C190.0649 (14)0.0589 (12)0.0627 (13)0.0058 (10)0.0032 (10)0.0159 (10)
C200.117 (2)0.0644 (14)0.0642 (14)0.0289 (14)0.0338 (13)0.0030 (11)
Geometric parameters (Å, °) top
O1—C11.216 (2)C9—H90.9300
O2—C51.3595 (19)C10—C151.384 (2)
O2—C171.4235 (18)C10—C111.385 (2)
O3—C71.3564 (19)C11—C121.377 (2)
O3—C161.425 (2)C11—H110.9300
O4—C121.366 (2)C12—C131.388 (2)
O4—C181.419 (2)C13—C141.387 (2)
O5—C131.3742 (18)C14—C151.383 (2)
O5—C191.413 (2)C15—H150.9300
O6—C141.3656 (19)C16—H16A0.9600
O6—C201.402 (2)C16—H16B0.9600
C1—C21.462 (2)C16—H16C0.9600
C1—C101.499 (2)C17—H17A0.9600
C2—C31.321 (2)C17—H17B0.9600
C2—H20.9300C17—H17C0.9600
C3—C41.447 (2)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C91.396 (2)C18—H18C0.9600
C4—C51.402 (2)C19—H19A0.9600
C5—C61.383 (2)C19—H19B0.9600
C6—C71.381 (2)C19—H19C0.9600
C6—H60.9300C20—H20A0.9600
C7—C81.387 (2)C20—H20B0.9600
C8—C91.364 (2)C20—H20C0.9600
C8—H80.9300
C5—O2—C17117.82 (13)C11—C12—C13119.79 (16)
C7—O3—C16117.64 (15)O5—C13—C14119.64 (14)
C12—O4—C18117.40 (13)O5—C13—C12120.52 (15)
C13—O5—C19113.86 (13)C14—C13—C12119.82 (14)
C14—O6—C20117.86 (14)O6—C14—C15124.57 (16)
O1—C1—C2121.06 (15)O6—C14—C13115.33 (14)
O1—C1—C10119.26 (16)C15—C14—C13120.10 (15)
C2—C1—C10119.67 (15)C14—C15—C10119.96 (16)
C3—C2—C1122.45 (17)C14—C15—H15120.0
C3—C2—H2118.8C10—C15—H15120.0
C1—C2—H2118.8O3—C16—H16A109.5
C2—C3—C4128.42 (17)O3—C16—H16B109.5
C2—C3—H3115.8H16A—C16—H16B109.5
C4—C3—H3115.8O3—C16—H16C109.5
C9—C4—C5116.56 (15)H16A—C16—H16C109.5
C9—C4—C3122.93 (14)H16B—C16—H16C109.5
C5—C4—C3120.50 (15)O2—C17—H17A109.5
O2—C5—C6122.56 (14)O2—C17—H17B109.5
O2—C5—C4115.95 (14)H17A—C17—H17B109.5
C6—C5—C4121.48 (15)O2—C17—H17C109.5
C7—C6—C5119.61 (15)H17A—C17—H17C109.5
C7—C6—H6120.2H17B—C17—H17C109.5
C5—C6—H6120.2O4—C18—H18A109.5
O3—C7—C6123.55 (15)O4—C18—H18B109.5
O3—C7—C8116.18 (16)H18A—C18—H18B109.5
C6—C7—C8120.26 (16)O4—C18—H18C109.5
C9—C8—C7119.28 (16)H18A—C18—H18C109.5
C9—C8—H8120.4H18B—C18—H18C109.5
C7—C8—H8120.4O5—C19—H19A109.5
C8—C9—C4122.75 (16)O5—C19—H19B109.5
C8—C9—H9118.6H19A—C19—H19B109.5
C4—C9—H9118.6O5—C19—H19C109.5
C15—C10—C11119.75 (15)H19A—C19—H19C109.5
C15—C10—C1122.81 (15)H19B—C19—H19C109.5
C11—C10—C1117.44 (15)O6—C20—H20A109.5
C12—C11—C10120.55 (16)O6—C20—H20B109.5
C12—C11—H11119.7H20A—C20—H20B109.5
C10—C11—H11119.7O6—C20—H20C109.5
O4—C12—C11124.89 (16)H20A—C20—H20C109.5
O4—C12—C13115.31 (14)H20B—C20—H20C109.5
O1—C1—C2—C310.4 (3)O1—C1—C10—C110.4 (3)
C10—C1—C2—C3169.13 (18)C2—C1—C10—C11179.08 (17)
C1—C2—C3—C4177.75 (18)C15—C10—C11—C120.4 (3)
C2—C3—C4—C93.8 (3)C1—C10—C11—C12179.24 (17)
C2—C3—C4—C5175.28 (19)C18—O4—C12—C114.6 (3)
C17—O2—C5—C62.4 (2)C18—O4—C12—C13175.86 (16)
C17—O2—C5—C4178.70 (15)C10—C11—C12—O4179.65 (16)
C9—C4—C5—O2175.91 (14)C10—C11—C12—C130.8 (3)
C3—C4—C5—O25.0 (2)C19—O5—C13—C1494.45 (19)
C9—C4—C5—C63.0 (2)C19—O5—C13—C1287.4 (2)
C3—C4—C5—C6176.14 (16)O4—C12—C13—O53.3 (2)
O2—C5—C6—C7176.89 (15)C11—C12—C13—O5176.24 (15)
C4—C5—C6—C71.9 (3)O4—C12—C13—C14178.56 (15)
C16—O3—C7—C60.5 (3)C11—C12—C13—C141.9 (3)
C16—O3—C7—C8178.72 (18)C20—O6—C14—C157.9 (3)
C5—C6—C7—O3179.56 (16)C20—O6—C14—C13171.57 (17)
C5—C6—C7—C80.4 (3)O5—C13—C14—O64.1 (2)
O3—C7—C8—C9179.29 (16)C12—C13—C14—O6177.80 (15)
C6—C7—C8—C91.5 (3)O5—C13—C14—C15176.41 (15)
C7—C8—C9—C40.3 (3)C12—C13—C14—C151.7 (3)
C5—C4—C9—C81.9 (3)O6—C14—C15—C10178.97 (16)
C3—C4—C9—C8177.22 (17)C13—C14—C15—C100.5 (3)
O1—C1—C10—C15180.0 (2)C11—C10—C15—C140.6 (3)
C2—C1—C10—C150.6 (3)C1—C10—C15—C14179.05 (17)
Hydrogen-bond geometry (°) top
Cg1 is the centroid of the C4–C9 ring.
D—H···A
—···
—···
—···
—···
—···
Table 1
Hydrogen-bond geometry (°)
top
Cg1 is the centroid of the C4–C9 ring.
D—H···A
—···
—···
—···
—···
—···
Acknowledgements top

The authors are grateful to the associate researcher Sun Jie from Shanghai Institute of Organic Chemistry, Chinese academy of Sciences [for what?]. This study was partially supported by the Zhejiang Natural Science Funds (Y2101108 & Y4090379) and the University Students in Zhejiang Science and Technology Innovation Projects (2011R413025).

references
References top

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Huang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518.

Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.

Peng, J., Xu, H., Li, Z., Zhang, Y. & Wu, J. (2010). Acta Cryst. E66, o1156–o1157.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110–8123.

Wu, J., Wang, C., Cai, Y., Yang, S., Zheng, X., Qiu, P., Peng, J., Wu, X., Liang, G. & Li, X. (2010). Chin. J. Org. Chem. 30, 884–889.