supplementary materials


zq2147 scheme

Acta Cryst. (2012). E68, o199-o200    [ doi:10.1107/S1600536811054080 ]

(E)-1-[2-(Methylsulfanyl)phenyl]-2-({(E)-2-[2-(methylsulfanyl)phenyl]hydrazinylidene}(nitro)methyl)diazene

K. G. von Eschwege, F. Muller and E. C. Hosten

Abstract top

In the title compound, C15H15N5O2S2, the phenyl rings make dihedral angles of 4.03 (4) and 9.77 (5)° with the plane defined by the central N-N-C-N-N atoms (r.m.s. deviation = 0.010 Å). The C-S-C-C torsion angles of the methylsulfanyl groups with their respective phenyl rings are -7.47 (13) and -72.07 (13)°. The shortest centroid-centroid distance of 3.707 Å occurs between the two [pi]-systems N-N-C-N-N and the benzene ring in the diazene 1-position. The H atom bound to the N atom is involved in intramolecular N-H...N and N-H...S contacts, while the nitro O atoms are involved in intermolecular C-H...O contacts.

Comment top

During the synthesis of the versatile trace metal analysis dithizone reagent, aniline is first diazotized and then treated with nitromethane to form the bright orange-red nitroformazan product (Pelkis et al., 1957). Ammonia and hydrogen sulfide gas are used to substitute the nitro group with sulfur towards the formation of dithizone, the chemistry of which is extensively described in the literature (Irving, 1977). Single crystal X-ray structures of nitroformazan derivatives were determined by Gilroy et al. (2008), Mito et al. (1997) and the dithizone structure by Laing (1977), while we performed extensive DFT (von Eschwege et al., 2011) and electrochemistry studies (von Eschwege & Swarts, 2010) on the free ligand.

We recently embarked on a study during which we synthesized a series of electronically altered dithizones for the purpose of investigating its altered redox and structural properties. During this process, crystals of the title compound, suitable for X-ray crystallography, were grown from an acetone solution overlaid with n-hexane.

The least square planes defined by the phenyl rings with respect to the plane defined by the N1, N2, C3, N3 and N4 atoms enclose dihedral angles of 9.77 (5)° and 4.03 (4)° (Fig. 1). The torsion angles of the S-methyl groups with their respective phenyl rings are 7.47 (13)° and 72.07 (13)°. The shortest centroid-centroid distance of 3.707 Å occurs between the two π-systems N1—N2—C3—N3—N4 and C11—C12—C13—C14—C15—C16. The H atom bound to N4 is involved in intramolecular N—H···N and N—H···S contacts while the nitro O atoms have intermolecular C—H···O contacts (Fig. 2). The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For the chemistry of dithizone, see: Irving (1977). For related structures, see: Laing (1977); Mito et al. (1997); Gilroy et al. (2008). For the synthesis of nitroformazans, see: Pelkis et al. (1957). For DFT and electrochemistry studies of dithizone, see: von Eschwege & Swarts (2010); von Eschwege, Conradie & Kuhn (2011).

Experimental top

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. The ortho-S-methyl derivative of nitroformazan was prepared according to the procedure reported by Pelkis et al. (1957). M.p. 144 °C. λmax (dichloromethane) 320, 479 nm. δH (600 MHz, CDCl3) 14.76 (1 H, 1 × s, 1 × NH), 2.50 (6 H, 1 × s, 2 × SCH3), 8.03 – 7.34 (8 H, 3 × m, 2 × C6H4)

Refinement top

All hydrogen positions were calculated after each cycle of refinement using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N), and with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density [HFIX 137 in SHELXL97 (Sheldrick, 2008)].

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anistropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Inter- and intramolecular contacts in the crystal structure of the title compound (ellipsoids drawn at the 50% probability level). Symmetry operators: (i) = -x, y + 1/2, -z + 1/2; (ii) = -x + 2, -y, -z + 1.
[Figure 3] Fig. 3. Molecular packing of the title compound (anistropic displacement ellipsoids drawn at 50% probability level).
(E)-1-[2-(Methylsulfanyl)phenyl]-2-({(E)-2-[2- (methylsulfanyl)phenyl]hydrazinylidene}(nitro)methyl)diazene top
Crystal data top
C15H15N5O2S2F(000) = 752
Mr = 361.44Dx = 1.499 Mg m3
Monoclinic, P21/cMelting point: 417 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.7283 (2) ÅCell parameters from 8473 reflections
b = 17.9791 (10) Åθ = 2.3–28.3°
c = 19.3865 (8) ŵ = 0.35 mm1
β = 103.646 (2)°T = 200 K
V = 1601.54 (13) Å3Platelet, red
Z = 40.79 × 0.21 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
3960 independent reflections
Radiation source: sealed tube3301 reflections with I > 2σ(I)
graphiteRint = 0.019
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 65
Tmin = 0.870, Tmax = 1.000k = 2323
14965 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.7279P]
where P = (Fo2 + 2Fc2)/3
3960 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H15N5O2S2V = 1601.54 (13) Å3
Mr = 361.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7283 (2) ŵ = 0.35 mm1
b = 17.9791 (10) ÅT = 200 K
c = 19.3865 (8) Å0.79 × 0.21 × 0.07 mm
β = 103.646 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3960 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3301 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 1.000Rint = 0.019
14965 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.31 e Å3
S = 1.04Δρmin = 0.25 e Å3
3960 reflectionsAbsolute structure: ?
219 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33810 (7)0.05295 (2)0.125542 (19)0.02859 (10)
S20.10204 (8)0.22354 (2)0.39420 (2)0.03395 (11)
O10.2660 (3)0.13599 (7)0.23524 (7)0.0451 (3)
O20.6661 (3)0.11093 (7)0.31138 (6)0.0419 (3)
N10.0436 (2)0.06137 (7)0.24775 (6)0.0261 (2)
N20.0632 (2)0.00197 (7)0.23768 (6)0.0254 (2)
N30.4414 (3)0.00974 (7)0.34898 (6)0.0262 (2)
N40.3493 (3)0.07389 (7)0.36783 (6)0.0275 (3)
H40.20110.09660.33970.033*
N50.4207 (3)0.09471 (7)0.27813 (6)0.0288 (3)
C10.6361 (3)0.08689 (10)0.05684 (8)0.0368 (3)
H1A0.81700.08390.07310.055*
H1B0.59930.13870.04600.055*
H1C0.65410.05650.01410.055*
C20.2794 (4)0.25326 (9)0.32603 (9)0.0364 (3)
H2A0.46600.27660.34810.055*
H2B0.15530.28920.29480.055*
H2C0.31320.21010.29820.055*
C30.3021 (3)0.02142 (8)0.29019 (7)0.0244 (3)
C110.2889 (3)0.08284 (8)0.19544 (7)0.0242 (3)
C120.4468 (3)0.03812 (8)0.13894 (7)0.0241 (3)
C130.6941 (3)0.07045 (9)0.09478 (8)0.0292 (3)
H130.80710.04200.05690.035*
C140.7781 (3)0.14243 (9)0.10470 (8)0.0326 (3)
H140.94750.16230.07370.039*
C150.6196 (3)0.18619 (9)0.15909 (8)0.0321 (3)
H150.67560.23610.16500.039*
C160.3795 (3)0.15564 (8)0.20428 (8)0.0292 (3)
H160.27210.18470.24250.035*
C210.4883 (3)0.10600 (8)0.43295 (7)0.0259 (3)
C220.3908 (3)0.17503 (8)0.45127 (7)0.0264 (3)
C230.5239 (3)0.20576 (9)0.51675 (8)0.0328 (3)
H230.45800.25230.53010.039*
C240.7501 (4)0.16978 (10)0.56265 (8)0.0364 (3)
H240.83790.19130.60730.044*
C250.8481 (4)0.10248 (10)0.54336 (9)0.0400 (4)
H251.00570.07800.57460.048*
C260.7182 (4)0.07032 (9)0.47872 (8)0.0371 (4)
H260.78630.02390.46570.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02626 (18)0.02805 (19)0.02859 (18)0.00116 (13)0.00074 (13)0.00361 (13)
S20.02892 (19)0.0374 (2)0.0351 (2)0.01037 (15)0.00660 (14)0.00065 (15)
O10.0362 (6)0.0348 (6)0.0586 (8)0.0037 (5)0.0001 (5)0.0214 (6)
O20.0419 (6)0.0366 (6)0.0381 (6)0.0139 (5)0.0090 (5)0.0063 (5)
N10.0245 (6)0.0282 (6)0.0231 (5)0.0008 (4)0.0008 (4)0.0003 (5)
N20.0238 (5)0.0268 (6)0.0234 (5)0.0031 (4)0.0017 (4)0.0001 (4)
N30.0288 (6)0.0227 (6)0.0240 (5)0.0000 (4)0.0003 (4)0.0006 (4)
N40.0288 (6)0.0243 (6)0.0244 (6)0.0029 (5)0.0037 (4)0.0018 (5)
N50.0322 (6)0.0251 (6)0.0273 (6)0.0010 (5)0.0034 (5)0.0023 (5)
C10.0343 (8)0.0377 (9)0.0340 (8)0.0035 (6)0.0008 (6)0.0093 (7)
C20.0401 (8)0.0297 (8)0.0382 (8)0.0071 (6)0.0068 (7)0.0080 (6)
C30.0261 (6)0.0221 (7)0.0235 (6)0.0010 (5)0.0024 (5)0.0001 (5)
C110.0214 (6)0.0281 (7)0.0217 (6)0.0020 (5)0.0026 (5)0.0018 (5)
C120.0225 (6)0.0274 (7)0.0223 (6)0.0025 (5)0.0052 (5)0.0011 (5)
C130.0251 (7)0.0344 (8)0.0249 (6)0.0026 (5)0.0003 (5)0.0013 (6)
C140.0286 (7)0.0358 (8)0.0302 (7)0.0039 (6)0.0006 (5)0.0066 (6)
C150.0333 (8)0.0290 (8)0.0330 (7)0.0043 (6)0.0056 (6)0.0028 (6)
C160.0294 (7)0.0298 (8)0.0266 (6)0.0012 (6)0.0032 (5)0.0025 (6)
C210.0263 (7)0.0252 (7)0.0235 (6)0.0021 (5)0.0003 (5)0.0014 (5)
C220.0265 (7)0.0278 (7)0.0248 (6)0.0009 (5)0.0057 (5)0.0001 (5)
C230.0393 (8)0.0304 (8)0.0295 (7)0.0020 (6)0.0098 (6)0.0060 (6)
C240.0430 (9)0.0376 (9)0.0248 (7)0.0078 (7)0.0002 (6)0.0059 (6)
C250.0422 (9)0.0386 (9)0.0303 (7)0.0031 (7)0.0090 (6)0.0022 (7)
C260.0413 (8)0.0301 (8)0.0316 (8)0.0070 (6)0.0080 (6)0.0051 (6)
Geometric parameters (Å, °) top
S1—C121.7538 (15)C11—C161.400 (2)
S1—C11.8018 (15)C11—C121.4205 (18)
S2—C221.7710 (14)C12—C131.4018 (19)
S2—C21.8050 (17)C13—C141.381 (2)
O1—N51.2208 (16)C13—H130.9500
O2—N51.2226 (16)C14—C151.385 (2)
N1—N21.2793 (17)C14—H140.9500
N1—C111.4028 (17)C15—C161.374 (2)
N2—C31.3754 (17)C15—H150.9500
N3—C31.3009 (17)C16—H160.9500
N3—N41.3148 (17)C21—C261.387 (2)
N4—C211.4029 (17)C21—C221.399 (2)
N4—H40.8800C22—C231.391 (2)
N5—C31.4720 (18)C23—C241.380 (2)
C1—H1A0.9800C23—H230.9500
C1—H1B0.9800C24—C251.379 (2)
C1—H1C0.9800C24—H240.9500
C2—H2A0.9800C25—C261.385 (2)
C2—H2B0.9800C25—H250.9500
C2—H2C0.9800C26—H260.9500
C12—S1—C1102.72 (7)C11—C12—S1121.56 (10)
C22—S2—C2100.39 (7)C14—C13—C12121.98 (13)
N2—N1—C11115.05 (11)C14—C13—H13119.0
N1—N2—C3113.46 (11)C12—C13—H13119.0
C3—N3—N4119.26 (12)C13—C14—C15121.09 (14)
N3—N4—C21119.70 (11)C13—C14—H14119.5
N3—N4—H4120.1C15—C14—H14119.5
C21—N4—H4120.1C16—C15—C14118.39 (14)
O1—N5—O2123.76 (13)C16—C15—H15120.8
O1—N5—C3117.59 (12)C14—C15—H15120.8
O2—N5—C3118.65 (11)C15—C16—C11121.74 (13)
S1—C1—H1A109.5C15—C16—H16119.1
S1—C1—H1B109.5C11—C16—H16119.1
H1A—C1—H1B109.5C26—C21—C22120.22 (13)
S1—C1—H1C109.5C26—C21—N4121.02 (13)
H1A—C1—H1C109.5C22—C21—N4118.76 (12)
H1B—C1—H1C109.5C23—C22—C21118.61 (13)
S2—C2—H2A109.5C23—C22—S2119.38 (12)
S2—C2—H2B109.5C21—C22—S2122.01 (10)
H2A—C2—H2B109.5C24—C23—C22121.13 (14)
S2—C2—H2C109.5C24—C23—H23119.4
H2A—C2—H2C109.5C22—C23—H23119.4
H2B—C2—H2C109.5C25—C24—C23119.69 (14)
N3—C3—N2134.15 (13)C25—C24—H24120.2
N3—C3—N5113.05 (11)C23—C24—H24120.2
N2—C3—N5112.77 (11)C24—C25—C26120.40 (15)
C16—C11—N1113.16 (12)C24—C25—H25119.8
C16—C11—C12120.20 (12)C26—C25—H25119.8
N1—C11—C12126.61 (13)C25—C26—C21119.93 (15)
C13—C12—C11116.57 (13)C25—C26—H26120.0
C13—C12—S1121.87 (11)C21—C26—H26120.0
C11—N1—N2—C3179.60 (11)C12—C13—C14—C150.2 (2)
C3—N3—N4—C21176.56 (13)C13—C14—C15—C161.6 (2)
N4—N3—C3—N21.0 (2)C14—C15—C16—C111.6 (2)
N4—N3—C3—N5176.84 (12)N1—C11—C16—C15178.69 (13)
N1—N2—C3—N31.7 (2)C12—C11—C16—C150.4 (2)
N1—N2—C3—N5179.48 (11)N3—N4—C21—C261.4 (2)
O1—N5—C3—N3161.94 (13)N3—N4—C21—C22178.64 (13)
O2—N5—C3—N317.90 (19)C26—C21—C22—C231.7 (2)
O1—N5—C3—N216.36 (18)N4—C21—C22—C23178.25 (13)
O2—N5—C3—N2163.80 (13)C26—C21—C22—S2179.03 (12)
N2—N1—C11—C16173.42 (12)N4—C21—C22—S21.06 (19)
N2—N1—C11—C128.4 (2)C2—S2—C22—C23108.63 (13)
C16—C11—C12—C130.93 (19)C2—S2—C22—C2172.07 (13)
N1—C11—C12—C13177.12 (13)C21—C22—C23—C240.8 (2)
C16—C11—C12—S1179.31 (11)S2—C22—C23—C24179.83 (12)
N1—C11—C12—S12.65 (19)C22—C23—C24—C250.5 (2)
C1—S1—C12—C137.47 (13)C23—C24—C25—C260.9 (3)
C1—S1—C12—C11172.28 (12)C24—C25—C26—C210.1 (3)
C11—C12—C13—C141.0 (2)C22—C21—C26—C251.2 (2)
S1—C12—C13—C14179.22 (11)N4—C21—C26—C25178.72 (15)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S20.882.603.0248 (13)110.
N4—H4···N10.881.992.6229 (16)128.
C2—H2B···O1i0.982.363.253 (2)151.
C25—H25···O2ii0.952.453.1901 (19)134.
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+2, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N4—H4···S20.882.603.0248 (13)110.
N4—H4···N10.881.992.6229 (16)128.
C2—H2B···O1i0.982.363.253 (2)151.
C25—H25···O2ii0.952.453.1901 (19)134.
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+2, −y, −z+1.
Acknowledgements top

The research funds of the University of the Free State, the Nelson Mandela Metropolitan University and the National Research Foundation are gratefully acknowledged.

references
References top

Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Eschwege, K. G. von, Conradie, J. & Kuhn, A. (2011). J. Phys. Chem. A. doi:10.1021/jp208212e.

Eschwege, K. G. von & Swarts, J. C. (2010). Polyhedron, 29, 1727–1733.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gilroy, J. B., Otieno, P. O., Ferguson, M. J., McDonald, R. & Hicks, R. G. (2008). Inorg. Chem. 47, 1279–1286.

Irving, H. M. N. H. (1977). Dithizone. Analytical Sciences Monographs No. 5. London: The Chemical Society.

Laing, M. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1248–1252.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Mito, M., Takeda, K., Mukai, K., Azuma, N., Gleiter, M. R., Krieger, C. & Neugebaue, F. A. (1997). J. Phys. Chem. B, 101, 9517–9524.

Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR, 27, 2190–2194.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.