supplementary materials


zs2166 scheme

Acta Cryst. (2012). E68, o22    [ doi:10.1107/S1600536811051051 ]

2,8-Dimesitylboranyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine

C.-X. Yuan

Abstract top

In the title compound, C51H56B2N2, a substituted Tröger's base, the dihedral angle between the two benzene rings constituting the Tröger's base framework is 104.42 (6)°. The crystal structure is stabilized by C-H...[pi] and weak C-H...N interactions.

Comment top

Tröger's base (TB) (Tröger, 1887), an old compound with more than 100 years' history, has gained current interest because of its C2 symmetry, chirality, and rigid concave shape (Valík et al., 2005; Dolenský et al., 2007; Sergeyev et al., 2009). Our previous research showed that its special lambda (Λ)-shaped configuration is disadvantageous to formation of ππ close stacking, resulting in high solid state fluorescence in organic compounds based on TB (Yuan et al., 2007; Xin et al., 2008; Yuan et al., 2011). In addition, organic boron compounds with dimesitylboryl groups exhibit interesting optoelectronic properties (Shirota & Noda, 1998; Zhao et al.,2006; Collings et al., 2009; Jäkle et al., 2010). In our research in searching for new optoelectronic materials based on TB, the title compound was designed and synthesized. Here, we report the synthesis and crystal structure of the title compound C51H56B2N2 (I).

In the racemic title compound (Fig. 1), the dihedral angle between the two benzene rings constituting the TB framework is 104.42 (6)°, which lies within the normal range for analogs of TB (Dolenský et al., 2007). The packing structure of (I) (Fig. 2) shows that molecules with the same chirality point in the same direction, while molecules with different chirality point in the opposite direction. The isomers stack alternately, forming an infinite three-dimensional network by means of noncovalent intermolecular C—H···π interactions between adjacent different chirality molecules and weak C—H···N interactions between adjacent same chirality molecules (Table 1). As expected, there are no obvious intermolecular π···π interactions in the crystal structure.

Related literature top

For the original Tröger's base, see: Tröger (1887). For the chemistry of Tröger's base, see: Valík et al. (2005); Dolenský et al. (2007); Sergeyev et al. (2009). For optoelectric applications of Tröger's base, see: Yuan et al. (2011); Xin et al. (2008); Yuan et al. (2007). For applications of organic boron compounds with dimesitylboryl groups in organic optoelectronics, see: Shirota & Noda (1998); Zhao et al. (2006); Collings et al. (2009); Jäkle (2010).

Experimental top

The reaction scheme for the synthesis of the title compound is shown in Fig. 3. n-Butyllithium (1.6 M in hexane, 1.86 ml) was added slowly to a solution of 2,8-dibromo-6H,12H-5,11-methanodibenzo[b,f][1,5]\ diazocine (1.243 mmol, 0.472 g) in anhydrous THF (20 ml) under nitrogen at -78 °C, and followed by stirring for a further 1.5 h. Dimesitylboron fluoride (3.729 mmol, 1 g in 5 ml THF) was then added dropwise to the reaction mixture and the reaction mixture was kept at -78 °C for another 1 h, then allowed to naturally rise to room temperature overnight. Water (20 ml) was added and the mixture was extracted with CH2Cl2 three times and the organic phase was dried over anhydrous MgSO4. After removing all solvents, the residue was purified by silica gel column chromatography with petroleum ether/EtOAc (10:1) as the eluent to yield the product as a white powder (0.58 g, 65%). The colorless prismatic single-crystal of compound (I) suitable for X-ray analysis was obtained by slow evaporation of its dichloromethane-petroleum ether solution.

1H NMR (300 MHz, CDCl3), δ (ppm): 1.90 (s, 24H), 2.28 (s, 12H), 4.15 (d, 2H, J = 16.5 Hz), 4.37 (s, 2H), 4.64 (d, 2H, J = 16.5 Hz), 6.78 (s, 8H), 7.04 (m, 4H), 7.27 (m, 2H). 13C NMR (75 MHz, CDCl3), δ (ppm): 20.71, 22.80, 58.77, 66.55, 123.75, 126.58, 127.63, 135.19, 135.35, 137.94, 140.23, 141.16, 151.39.

Refinement top

All H atoms were fixed geometrically and were allowed to ride on their attached atoms, with C—H = 0.93 Å (aromatic), 0.97 (CH2), and 0.96 Å (CH3). The Uiso values were constrained to be 1.5Ueq(C) of the carrier atom for methyl H atoms and 1.2Ueq(C) for the remaining H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing structure of the title compound viewed down the a axis, showing intermolecular C—H···π and C—H···N interactions as blue and orange dashed lines, respectively. H atoms not involved in C—H···π and C—H···N interactions have been omitted for clarity. (S, S)-(I) and (R, R)-(I) are colored as green and purple, respectively.
[Figure 3] Fig. 3. Synthetic scheme for the synthesis of (I)
5-[bis(2,4,6-trimethylphenyl)boranyl]-13-[(2,4,5-trimethylphenyl)(2,4,6- trimethylphenyl)boranyl]-1,9-diazatetracyclo[7.7.1.02,7.010,15]heptadeca- 2,4,6,10 (15),11,13-hexaene top
Crystal data top
C51H56B2N2Z = 2
Mr = 718.60F(000) = 772
Triclinic, P1Dx = 1.122 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3565 (3) ÅCell parameters from 8341 reflections
b = 14.0077 (6) Åθ = 3.2–26°
c = 16.3650 (6) ŵ = 0.06 mm1
α = 86.079 (3)°T = 293 K
β = 83.808 (3)°Prism, colourless
γ = 88.377 (3)°0.65 × 0.41 × 0.22 mm
V = 2126.87 (14) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini CCD
diffractometer
8341 independent reflections
Radiation source: fine-focus sealed tube6172 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.858, Tmax = 1.000k = 1717
25278 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.8104P]
where P = (Fo2 + 2Fc2)/3
8341 reflections(Δ/σ)max < 0.001
496 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C51H56B2N2γ = 88.377 (3)°
Mr = 718.60V = 2126.87 (14) Å3
Triclinic, P1Z = 2
a = 9.3565 (3) ÅMo Kα radiation
b = 14.0077 (6) ŵ = 0.06 mm1
c = 16.3650 (6) ÅT = 293 K
α = 86.079 (3)°0.65 × 0.41 × 0.22 mm
β = 83.808 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini CCD
diffractometer
8341 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
6172 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 1.000Rint = 0.026
25278 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.172Δρmax = 0.39 e Å3
S = 1.02Δρmin = 0.28 e Å3
8341 reflectionsAbsolute structure: ?
496 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51726 (17)0.23628 (12)0.05204 (10)0.0431 (4)
N20.68504 (18)0.10503 (11)0.07519 (10)0.0423 (4)
B20.7203 (2)0.04164 (15)0.27696 (14)0.0393 (5)
B10.9474 (2)0.51197 (16)0.18209 (13)0.0392 (5)
C10.5453 (2)0.14646 (15)0.09129 (13)0.0506 (5)
H1A0.54260.15770.15030.061*
H1B0.47070.10160.07080.061*
C20.7951 (2)0.16395 (13)0.12414 (12)0.0429 (5)
H2A0.79950.14940.18150.052*
H2B0.88820.14830.10530.052*
C30.7623 (2)0.26997 (13)0.11699 (11)0.0364 (4)
C40.63185 (19)0.30059 (13)0.07553 (11)0.0366 (4)
C50.6121 (2)0.39681 (14)0.06065 (12)0.0416 (4)
H5A0.52900.41700.02960.050*
C60.7135 (2)0.46231 (14)0.09109 (12)0.0417 (4)
H6A0.69750.52620.08000.050*
C70.8414 (2)0.43589 (13)0.13864 (11)0.0382 (4)
C80.8623 (2)0.33790 (13)0.14839 (11)0.0378 (4)
H8A0.94740.31730.17730.045*
C90.8986 (2)0.62122 (13)0.18429 (12)0.0389 (4)
C100.9727 (2)0.68868 (14)0.14580 (12)0.0420 (4)
C111.0972 (2)0.65917 (17)0.09758 (14)0.0556 (6)
H11A1.13380.71460.07610.083*
H11B1.17180.62990.13310.083*
H11C1.06510.61420.05290.083*
C120.9304 (2)0.78453 (14)0.15086 (13)0.0480 (5)
H12A0.97810.82760.12320.058*
C130.8197 (2)0.81844 (14)0.19557 (13)0.0470 (5)
C140.7811 (3)0.92348 (15)0.20363 (17)0.0670 (7)
H14A0.70240.93320.23660.100*
H14B0.86270.95820.22950.100*
H14C0.75370.94600.15000.100*
C150.7466 (2)0.75212 (14)0.23226 (13)0.0459 (5)
H15A0.67180.77320.26250.055*
C160.7802 (2)0.65504 (14)0.22575 (12)0.0436 (5)
C170.6879 (3)0.58954 (16)0.26633 (17)0.0622 (6)
H17A0.61390.62660.29090.093*
H17B0.64470.54330.22580.093*
H17C0.74650.55710.30810.093*
C181.0993 (2)0.48020 (13)0.22664 (13)0.0435 (5)
C191.1326 (3)0.49816 (15)0.31254 (14)0.0534 (5)
C201.0258 (3)0.5441 (2)0.36643 (15)0.0751 (8)
H20A1.06870.55000.42250.113*
H20B0.99830.60640.34840.113*
H20C0.94230.50510.36280.113*
C211.2663 (3)0.47011 (18)0.35033 (17)0.0684 (7)
H21A1.28520.48060.40710.082*
C221.3716 (3)0.42734 (19)0.3067 (2)0.0720 (8)
C231.5150 (3)0.3967 (3)0.3497 (3)0.1117 (14)
H23A1.57420.36850.30980.168*
H23B1.56170.45150.37810.168*
H23C1.50000.35070.38870.168*
C241.3400 (2)0.41133 (17)0.22313 (19)0.0662 (7)
H24A1.41040.38400.19240.079*
C251.2059 (2)0.43463 (15)0.18253 (15)0.0512 (5)
C261.1834 (3)0.4101 (2)0.09124 (16)0.0723 (7)
H26A1.26880.37940.07340.108*
H26B1.10410.36760.07900.108*
H26C1.16280.46750.06300.108*
C270.4894 (2)0.21334 (15)0.03740 (12)0.0467 (5)
H27A0.39450.18660.05000.056*
H27B0.49140.27160.06610.056*
C280.60092 (19)0.14230 (13)0.06734 (11)0.0377 (4)
C290.69825 (19)0.09638 (13)0.01080 (11)0.0367 (4)
C300.8076 (2)0.03798 (13)0.03987 (12)0.0401 (4)
H30A0.87440.00890.00260.048*
C310.8177 (2)0.02289 (14)0.12294 (12)0.0413 (4)
H31A0.89260.01540.14060.050*
C320.7184 (2)0.06351 (13)0.18185 (11)0.0385 (4)
C330.6120 (2)0.12375 (14)0.15082 (12)0.0396 (4)
H33A0.54540.15280.18810.048*
C340.6102 (2)0.09831 (14)0.33754 (11)0.0406 (4)
C350.6192 (2)0.19725 (15)0.34510 (12)0.0457 (5)
C420.7362 (3)0.25709 (17)0.29743 (16)0.0668 (7)
H37A0.72310.32250.31130.100*
H37B0.73120.25340.23940.100*
H37C0.82840.23340.31130.100*
C360.5181 (2)0.24404 (17)0.39760 (13)0.0538 (5)
H38A0.52870.30880.40400.065*
C370.4024 (3)0.19763 (19)0.44059 (13)0.0588 (6)
C380.2895 (3)0.2517 (3)0.49355 (19)0.0949 (10)
H40A0.31460.31780.49180.142*
H40B0.28430.22480.54930.142*
H40C0.19780.24670.47310.142*
C390.3923 (2)0.10108 (19)0.43229 (14)0.0586 (6)
H41A0.31480.06870.46070.070*
C400.4933 (2)0.05027 (16)0.38313 (12)0.0467 (5)
C410.4710 (3)0.05449 (17)0.37687 (17)0.0651 (7)
H43A0.38670.07390.41210.098*
H43B0.55310.09030.39360.098*
H43C0.45880.06630.32100.098*
C430.8282 (2)0.03840 (14)0.30881 (11)0.0410 (4)
C440.8245 (2)0.13399 (15)0.28621 (12)0.0484 (5)
C450.7138 (3)0.16693 (17)0.23423 (17)0.0706 (7)
H46A0.72950.23370.22580.106*
H46B0.72230.13090.18190.106*
H46C0.61930.15710.26190.106*
C460.9208 (3)0.20248 (17)0.31466 (14)0.0594 (6)
H47A0.91440.26530.30050.071*
C471.0246 (3)0.1808 (2)0.36275 (15)0.0654 (7)
C481.1298 (4)0.2561 (3)0.3933 (2)0.1131 (13)
H49A1.11100.31660.37280.170*
H49B1.11860.26150.45240.170*
H49C1.22630.23780.37390.170*
C491.0302 (2)0.0873 (2)0.38415 (14)0.0614 (6)
H50A1.10130.07110.41600.074*
C500.9336 (2)0.01686 (16)0.35988 (12)0.0481 (5)
C510.9476 (3)0.08288 (19)0.38673 (16)0.0653 (7)
H52A1.02460.08380.42100.098*
H52B0.85930.10220.41720.098*
H52C0.96770.12620.33910.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0345 (8)0.0484 (10)0.0461 (9)0.0048 (7)0.0092 (7)0.0084 (7)
N20.0504 (10)0.0381 (8)0.0387 (9)0.0070 (7)0.0052 (7)0.0019 (7)
B20.0376 (11)0.0381 (11)0.0428 (12)0.0068 (9)0.0072 (9)0.0001 (9)
B10.0407 (11)0.0400 (11)0.0385 (11)0.0025 (9)0.0096 (9)0.0042 (9)
C10.0517 (12)0.0526 (12)0.0498 (12)0.0127 (10)0.0177 (10)0.0042 (10)
C20.0540 (12)0.0358 (10)0.0372 (10)0.0014 (9)0.0043 (9)0.0042 (8)
C30.0415 (10)0.0357 (9)0.0316 (9)0.0013 (8)0.0035 (8)0.0008 (7)
C40.0333 (9)0.0423 (10)0.0339 (9)0.0014 (8)0.0072 (8)0.0035 (8)
C50.0329 (9)0.0467 (11)0.0437 (11)0.0078 (8)0.0002 (8)0.0016 (8)
C60.0429 (11)0.0352 (10)0.0469 (11)0.0053 (8)0.0043 (9)0.0053 (8)
C70.0373 (10)0.0380 (10)0.0391 (10)0.0015 (8)0.0038 (8)0.0026 (8)
C80.0360 (9)0.0395 (10)0.0368 (9)0.0029 (8)0.0010 (8)0.0030 (8)
C90.0382 (10)0.0361 (10)0.0417 (10)0.0042 (8)0.0001 (8)0.0027 (8)
C100.0414 (10)0.0421 (11)0.0414 (10)0.0106 (8)0.0044 (8)0.0053 (8)
C110.0534 (13)0.0603 (14)0.0553 (13)0.0144 (11)0.0108 (11)0.0061 (11)
C120.0493 (12)0.0415 (11)0.0524 (12)0.0146 (9)0.0077 (10)0.0135 (9)
C130.0459 (11)0.0341 (10)0.0568 (12)0.0021 (9)0.0158 (10)0.0055 (9)
C140.0688 (16)0.0363 (11)0.0908 (18)0.0001 (11)0.0171 (14)0.0080 (11)
C150.0423 (11)0.0400 (11)0.0536 (12)0.0018 (9)0.0011 (9)0.0015 (9)
C160.0440 (11)0.0377 (10)0.0495 (11)0.0014 (8)0.0050 (9)0.0054 (8)
C170.0648 (15)0.0453 (12)0.0817 (17)0.0009 (11)0.0311 (13)0.0052 (11)
C180.0420 (11)0.0358 (10)0.0528 (12)0.0061 (8)0.0016 (9)0.0073 (9)
C190.0609 (13)0.0411 (11)0.0569 (13)0.0092 (10)0.0060 (11)0.0096 (10)
C200.096 (2)0.0772 (18)0.0498 (14)0.0014 (16)0.0017 (14)0.0002 (12)
C210.0740 (17)0.0557 (14)0.0716 (16)0.0175 (13)0.0236 (14)0.0203 (12)
C220.0468 (13)0.0620 (16)0.107 (2)0.0127 (12)0.0158 (15)0.0387 (15)
C230.0571 (17)0.113 (3)0.165 (4)0.0117 (17)0.032 (2)0.076 (3)
C240.0419 (12)0.0555 (14)0.105 (2)0.0005 (10)0.0108 (13)0.0305 (14)
C250.0421 (11)0.0432 (11)0.0699 (14)0.0015 (9)0.0085 (10)0.0120 (10)
C260.0622 (15)0.0836 (18)0.0741 (17)0.0123 (14)0.0258 (13)0.0042 (14)
C270.0330 (10)0.0547 (12)0.0494 (12)0.0028 (9)0.0001 (9)0.0106 (9)
C280.0308 (9)0.0389 (10)0.0419 (10)0.0007 (8)0.0010 (8)0.0040 (8)
C290.0381 (10)0.0337 (9)0.0381 (10)0.0077 (8)0.0029 (8)0.0009 (7)
C300.0376 (10)0.0398 (10)0.0421 (10)0.0023 (8)0.0017 (8)0.0058 (8)
C310.0348 (10)0.0403 (10)0.0483 (11)0.0048 (8)0.0054 (8)0.0015 (8)
C320.0361 (10)0.0381 (10)0.0407 (10)0.0011 (8)0.0033 (8)0.0008 (8)
C330.0335 (9)0.0427 (10)0.0407 (10)0.0020 (8)0.0027 (8)0.0002 (8)
C340.0387 (10)0.0468 (11)0.0357 (10)0.0007 (8)0.0046 (8)0.0033 (8)
C350.0453 (11)0.0470 (11)0.0432 (11)0.0001 (9)0.0011 (9)0.0014 (9)
C420.0692 (16)0.0493 (13)0.0771 (17)0.0102 (12)0.0163 (13)0.0044 (12)
C360.0595 (13)0.0572 (13)0.0440 (11)0.0090 (11)0.0028 (10)0.0070 (10)
C370.0519 (13)0.0812 (17)0.0397 (11)0.0125 (12)0.0050 (10)0.0002 (11)
C380.081 (2)0.119 (3)0.0756 (19)0.0248 (19)0.0261 (16)0.0110 (18)
C390.0442 (12)0.0805 (17)0.0471 (12)0.0031 (11)0.0042 (10)0.0109 (11)
C400.0413 (11)0.0562 (12)0.0415 (11)0.0036 (9)0.0054 (9)0.0071 (9)
C410.0548 (14)0.0626 (15)0.0768 (17)0.0161 (12)0.0074 (12)0.0114 (12)
C430.0407 (10)0.0475 (11)0.0338 (9)0.0001 (8)0.0018 (8)0.0008 (8)
C440.0559 (12)0.0469 (12)0.0404 (11)0.0036 (10)0.0001 (9)0.0019 (9)
C450.096 (2)0.0479 (13)0.0715 (16)0.0103 (13)0.0217 (15)0.0085 (12)
C460.0688 (15)0.0538 (13)0.0492 (13)0.0147 (11)0.0123 (12)0.0070 (10)
C470.0513 (13)0.0804 (18)0.0567 (14)0.0226 (12)0.0073 (11)0.0202 (13)
C480.089 (2)0.115 (3)0.127 (3)0.052 (2)0.010 (2)0.027 (2)
C490.0398 (12)0.0920 (19)0.0499 (13)0.0043 (12)0.0058 (10)0.0127 (12)
C500.0401 (11)0.0653 (14)0.0376 (10)0.0018 (10)0.0021 (9)0.0030 (9)
C510.0590 (14)0.0805 (17)0.0607 (15)0.0077 (13)0.0188 (12)0.0125 (13)
Geometric parameters (Å, °) top
N1—C41.424 (2)C23—H23C0.9600
N1—C11.456 (3)C24—C251.396 (3)
N1—C271.474 (2)C24—H24A0.9300
N2—C291.422 (2)C25—C261.504 (3)
N2—C11.458 (3)C26—H26A0.9600
N2—C21.470 (2)C26—H26B0.9600
B2—C321.567 (3)C26—H26C0.9600
B2—C431.587 (3)C27—C281.518 (3)
B2—C341.586 (3)C27—H27A0.9700
B1—C71.558 (3)C27—H27B0.9700
B1—C91.584 (3)C28—C331.388 (3)
B1—C181.593 (3)C28—C291.402 (3)
C1—H1A0.9700C29—C301.395 (3)
C1—H1B0.9700C30—C311.374 (3)
C2—C31.518 (2)C30—H30A0.9300
C2—H2A0.9700C31—C321.403 (3)
C2—H2B0.9700C31—H31A0.9300
C3—C81.388 (3)C32—C331.401 (3)
C3—C41.402 (3)C33—H33A0.9300
C4—C51.390 (3)C34—C351.405 (3)
C5—C61.369 (3)C34—C401.415 (3)
C5—H5A0.9300C35—C361.389 (3)
C6—C71.410 (3)C35—C421.512 (3)
C6—H6A0.9300C42—H37A0.9600
C7—C81.398 (3)C42—H37B0.9600
C8—H8A0.9300C42—H37C0.9600
C9—C101.408 (3)C36—C371.379 (3)
C9—C161.415 (3)C36—H38A0.9300
C10—C121.389 (3)C37—C391.375 (4)
C10—C111.509 (3)C37—C381.512 (3)
C11—H11A0.9600C38—H40A0.9600
C11—H11B0.9600C38—H40B0.9600
C11—H11C0.9600C38—H40C0.9600
C12—C131.386 (3)C39—C401.387 (3)
C12—H12A0.9300C39—H41A0.9300
C13—C151.376 (3)C40—C411.500 (3)
C13—C141.505 (3)C41—H43A0.9600
C14—H14A0.9600C41—H43B0.9600
C14—H14B0.9600C41—H43C0.9600
C14—H14C0.9600C43—C501.411 (3)
C15—C161.387 (3)C43—C441.416 (3)
C15—H15A0.9300C44—C461.389 (3)
C16—C171.510 (3)C44—C451.510 (3)
C17—H17A0.9600C45—H46A0.9600
C17—H17B0.9600C45—H46B0.9600
C17—H17C0.9600C45—H46C0.9600
C18—C251.407 (3)C46—C471.368 (4)
C18—C191.413 (3)C46—H47A0.9300
C19—C211.393 (3)C47—C491.381 (4)
C19—C201.506 (4)C47—C481.519 (3)
C20—H20A0.9600C48—H49A0.9600
C20—H20B0.9600C48—H49B0.9600
C20—H20C0.9600C48—H49C0.9600
C21—C221.378 (4)C49—C501.387 (3)
C21—H21A0.9300C49—H50A0.9300
C22—C241.372 (4)C50—C511.506 (3)
C22—C231.512 (3)C51—H52A0.9600
C23—H23A0.9600C51—H52B0.9600
C23—H23B0.9600C51—H52C0.9600
C4—N1—C1110.56 (16)C24—C25—C18120.2 (2)
C4—N1—C27114.46 (15)C24—C25—C26117.1 (2)
C1—N1—C27107.63 (16)C18—C25—C26122.75 (19)
C29—N2—C1110.91 (16)C25—C26—H26A109.5
C29—N2—C2114.56 (15)C25—C26—H26B109.5
C1—N2—C2107.14 (15)H26A—C26—H26B109.5
C32—B2—C43118.92 (17)C25—C26—H26C109.5
C32—B2—C34118.46 (17)H26A—C26—H26C109.5
C43—B2—C34122.59 (17)H26B—C26—H26C109.5
C7—B1—C9118.77 (17)N1—C27—C28111.06 (16)
C7—B1—C18120.67 (17)N1—C27—H27A109.4
C9—B1—C18120.52 (17)C28—C27—H27A109.4
N1—C1—N2111.36 (16)N1—C27—H27B109.4
N1—C1—H1A109.4C28—C27—H27B109.4
N2—C1—H1A109.4H27A—C27—H27B108.0
N1—C1—H1B109.4C33—C28—C29118.57 (17)
N2—C1—H1B109.4C33—C28—C27120.96 (17)
H1A—C1—H1B108.0C29—C28—C27120.43 (17)
N2—C2—C3111.47 (15)C30—C29—C28119.17 (17)
N2—C2—H2A109.3C30—C29—N2119.18 (16)
C3—C2—H2A109.3C28—C29—N2121.60 (17)
N2—C2—H2B109.3C31—C30—C29120.74 (17)
C3—C2—H2B109.3C31—C30—H30A119.6
H2A—C2—H2B108.0C29—C30—H30A119.6
C8—C3—C4118.87 (16)C30—C31—C32122.02 (17)
C8—C3—C2120.89 (16)C30—C31—H31A119.0
C4—C3—C2120.20 (17)C32—C31—H31A119.0
C5—C4—C3118.98 (17)C33—C32—C31115.95 (17)
C5—C4—N1119.50 (16)C33—C32—B2120.79 (17)
C3—C4—N1121.45 (17)C31—C32—B2123.23 (17)
C6—C5—C4120.86 (17)C28—C33—C32123.43 (17)
C6—C5—H5A119.6C28—C33—H33A118.3
C4—C5—H5A119.6C32—C33—H33A118.3
C5—C6—C7122.04 (17)C35—C34—C40117.55 (18)
C5—C6—H6A119.0C35—C34—B2122.38 (17)
C7—C6—H6A119.0C40—C34—B2119.99 (18)
C8—C7—C6115.80 (17)C36—C35—C34120.17 (19)
C8—C7—B1122.30 (17)C36—C35—C42117.3 (2)
C6—C7—B1121.79 (17)C34—C35—C42122.54 (18)
C3—C8—C7123.14 (17)C35—C42—H37A109.5
C3—C8—H8A118.4C35—C42—H37B109.5
C7—C8—H8A118.4H37A—C42—H37B109.5
C10—C9—C16117.43 (17)C35—C42—H37C109.5
C10—C9—B1121.20 (17)H37A—C42—H37C109.5
C16—C9—B1121.36 (16)H37B—C42—H37C109.5
C12—C10—C9119.99 (19)C37—C36—C35122.2 (2)
C12—C10—C11118.57 (18)C37—C36—H38A118.9
C9—C10—C11121.44 (18)C35—C36—H38A118.9
C10—C11—H11A109.5C39—C37—C36117.6 (2)
C10—C11—H11B109.5C39—C37—C38121.4 (2)
H11A—C11—H11B109.5C36—C37—C38121.0 (3)
C10—C11—H11C109.5C37—C38—H40A109.5
H11A—C11—H11C109.5C37—C38—H40B109.5
H11B—C11—H11C109.5H40A—C38—H40B109.5
C13—C12—C10122.51 (18)C37—C38—H40C109.5
C13—C12—H12A118.7H40A—C38—H40C109.5
C10—C12—H12A118.7H40B—C38—H40C109.5
C15—C13—C12117.24 (18)C37—C39—C40122.4 (2)
C15—C13—C14121.4 (2)C37—C39—H41A118.8
C12—C13—C14121.4 (2)C40—C39—H41A118.8
C13—C14—H14A109.5C39—C40—C34119.9 (2)
C13—C14—H14B109.5C39—C40—C41118.3 (2)
H14A—C14—H14B109.5C34—C40—C41121.66 (19)
C13—C14—H14C109.5C40—C41—H43A109.5
H14A—C14—H14C109.5C40—C41—H43B109.5
H14B—C14—H14C109.5H43A—C41—H43B109.5
C13—C15—C16122.4 (2)C40—C41—H43C109.5
C13—C15—H15A118.8H43A—C41—H43C109.5
C16—C15—H15A118.8H43B—C41—H43C109.5
C15—C16—C9120.22 (18)C50—C43—C44117.15 (19)
C15—C16—C17117.08 (19)C50—C43—B2121.31 (18)
C9—C16—C17122.68 (18)C44—C43—B2121.53 (17)
C16—C17—H17A109.5C46—C44—C43120.3 (2)
C16—C17—H17B109.5C46—C44—C45117.3 (2)
H17A—C17—H17B109.5C43—C44—C45122.30 (19)
C16—C17—H17C109.5C44—C45—H46A109.5
H17A—C17—H17C109.5C44—C45—H46B109.5
H17B—C17—H17C109.5H46A—C45—H46B109.5
C25—C18—C19117.46 (19)C44—C45—H46C109.5
C25—C18—B1121.76 (18)H46A—C45—H46C109.5
C19—C18—B1120.78 (19)H46B—C45—H46C109.5
C21—C19—C18119.9 (2)C47—C46—C44122.3 (2)
C21—C19—C20117.8 (2)C47—C46—H47A118.9
C18—C19—C20122.2 (2)C44—C46—H47A118.9
C19—C20—H20A109.5C46—C47—C49117.8 (2)
C19—C20—H20B109.5C46—C47—C48121.9 (3)
H20A—C20—H20B109.5C49—C47—C48120.3 (3)
C19—C20—H20C109.5C47—C48—H49A109.5
H20A—C20—H20C109.5C47—C48—H49B109.5
H20B—C20—H20C109.5H49A—C48—H49B109.5
C22—C21—C19122.5 (2)C47—C48—H49C109.5
C22—C21—H21A118.8H49A—C48—H49C109.5
C19—C21—H21A118.8H49B—C48—H49C109.5
C24—C22—C21117.5 (2)C47—C49—C50122.4 (2)
C24—C22—C23121.3 (3)C47—C49—H50A118.8
C21—C22—C23121.1 (3)C50—C49—H50A118.8
C22—C23—H23A109.5C49—C50—C43120.1 (2)
C22—C23—H23B109.5C49—C50—C51118.5 (2)
H23A—C23—H23B109.5C43—C50—C51121.33 (19)
C22—C23—H23C109.5C50—C51—H52A109.5
H23A—C23—H23C109.5C50—C51—H52B109.5
H23B—C23—H23C109.5H52A—C51—H52B109.5
C22—C24—C25122.4 (2)C50—C51—H52C109.5
C22—C24—H24A118.8H52A—C51—H52C109.5
C25—C24—H24A118.8H52B—C51—H52C109.5
C4—N1—C1—N253.9 (2)C19—C18—C25—C26179.0 (2)
C27—N1—C1—N271.8 (2)B1—C18—C25—C261.8 (3)
C29—N2—C1—N153.3 (2)C4—N1—C27—C2876.7 (2)
C2—N2—C1—N172.4 (2)C1—N1—C27—C2846.6 (2)
C29—N2—C2—C378.0 (2)N1—C27—C28—C33168.09 (17)
C1—N2—C2—C345.4 (2)N1—C27—C28—C299.7 (3)
N2—C2—C3—C8170.59 (16)C33—C28—C29—C303.5 (3)
N2—C2—C3—C47.0 (2)C27—C28—C29—C30174.35 (17)
C8—C3—C4—C55.8 (3)C33—C28—C29—N2174.10 (16)
C2—C3—C4—C5171.83 (17)C27—C28—C29—N28.0 (3)
C8—C3—C4—N1171.16 (16)C1—N2—C29—C30164.55 (17)
C2—C3—C4—N111.2 (3)C2—N2—C29—C3074.0 (2)
C1—N1—C4—C5165.27 (17)C1—N2—C29—C2813.1 (2)
C27—N1—C4—C573.0 (2)C2—N2—C29—C28108.4 (2)
C1—N1—C4—C311.6 (2)C28—C29—C30—C312.1 (3)
C27—N1—C4—C3110.09 (19)N2—C29—C30—C31175.63 (17)
C3—C4—C5—C64.8 (3)C29—C30—C31—C321.1 (3)
N1—C4—C5—C6172.19 (17)C30—C31—C32—C332.7 (3)
C4—C5—C6—C70.1 (3)C30—C31—C32—B2175.32 (18)
C5—C6—C7—C83.9 (3)C43—B2—C32—C33171.14 (17)
C5—C6—C7—B1172.35 (18)C34—B2—C32—C336.9 (3)
C9—B1—C7—C8166.36 (17)C43—B2—C32—C316.8 (3)
C18—B1—C7—C811.2 (3)C34—B2—C32—C31175.19 (17)
C9—B1—C7—C69.6 (3)C29—C28—C33—C322.0 (3)
C18—B1—C7—C6172.85 (17)C27—C28—C33—C32175.89 (18)
C4—C3—C8—C72.0 (3)C31—C32—C33—C281.1 (3)
C2—C3—C8—C7175.62 (18)B2—C32—C33—C28176.96 (17)
C6—C7—C8—C32.8 (3)C32—B2—C34—C3567.2 (2)
B1—C7—C8—C3173.40 (17)C43—B2—C34—C35114.8 (2)
C7—B1—C9—C10117.5 (2)C32—B2—C34—C40109.4 (2)
C18—B1—C9—C1064.9 (3)C43—B2—C34—C4068.6 (2)
C7—B1—C9—C1663.2 (3)C40—C34—C35—C361.8 (3)
C18—B1—C9—C16114.3 (2)B2—C34—C35—C36178.43 (19)
C16—C9—C10—C121.3 (3)C40—C34—C35—C42177.9 (2)
B1—C9—C10—C12178.00 (18)B2—C34—C35—C421.3 (3)
C16—C9—C10—C11177.87 (18)C34—C35—C36—C373.3 (3)
B1—C9—C10—C112.8 (3)C42—C35—C36—C37176.4 (2)
C9—C10—C12—C132.6 (3)C35—C36—C37—C392.3 (3)
C11—C10—C12—C13178.26 (19)C35—C36—C37—C38176.5 (2)
C10—C12—C13—C153.3 (3)C36—C37—C39—C400.2 (3)
C10—C12—C13—C14176.79 (19)C38—C37—C39—C40179.0 (2)
C12—C13—C15—C160.1 (3)C37—C39—C40—C341.6 (3)
C14—C13—C15—C16180.0 (2)C37—C39—C40—C41178.8 (2)
C13—C15—C16—C93.7 (3)C35—C34—C40—C390.6 (3)
C13—C15—C16—C17177.8 (2)B2—C34—C40—C39176.12 (19)
C10—C9—C16—C154.3 (3)C35—C34—C40—C41177.68 (19)
B1—C9—C16—C15174.97 (18)B2—C34—C40—C411.0 (3)
C10—C9—C16—C17177.3 (2)C32—B2—C43—C50120.6 (2)
B1—C9—C16—C173.4 (3)C34—B2—C43—C5061.4 (3)
C7—B1—C18—C2564.2 (3)C32—B2—C43—C4458.3 (3)
C9—B1—C18—C25118.3 (2)C34—B2—C43—C44119.6 (2)
C7—B1—C18—C19116.6 (2)C50—C43—C44—C460.7 (3)
C9—B1—C18—C1960.9 (3)B2—C43—C44—C46179.66 (19)
C25—C18—C19—C210.6 (3)C50—C43—C44—C45177.9 (2)
B1—C18—C19—C21179.77 (19)B2—C43—C44—C453.1 (3)
C25—C18—C19—C20178.3 (2)C43—C44—C46—C472.1 (3)
B1—C18—C19—C202.5 (3)C45—C44—C46—C47179.4 (2)
C18—C19—C21—C222.0 (3)C44—C46—C47—C491.1 (3)
C20—C19—C21—C22179.9 (2)C44—C46—C47—C48179.7 (2)
C19—C21—C22—C241.0 (4)C46—C47—C49—C501.2 (3)
C19—C21—C22—C23179.3 (2)C48—C47—C49—C50177.9 (2)
C21—C22—C24—C251.5 (3)C47—C49—C50—C432.6 (3)
C23—C22—C24—C25176.7 (2)C47—C49—C50—C51179.6 (2)
C22—C24—C25—C183.0 (3)C44—C43—C50—C491.6 (3)
C22—C24—C25—C26177.8 (2)B2—C43—C50—C49177.44 (19)
C19—C18—C25—C241.8 (3)C44—C43—C50—C51179.37 (19)
B1—C18—C25—C24177.36 (19)B2—C43—C50—C510.4 (3)
Hydrogen-bond geometry (Å, °) top
Cg7 and Cg8 are the centroids of the C34–C37/C39/C40 and C43/C44/C46/C47/C49/C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14C···N2i0.962.643.448 (3)141.
C15—H15A···Cg7ii0.932.943.844 (2)166.
C38—H40B···Cg8iii0.973.003.751 (3)136.
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg7 and Cg8 are the centroids of the C34–C37/C39/C40 and C43/C44/C46/C47/C49/C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14C···N2i0.962.643.448 (3)141.
C15—H15A···Cg7ii0.932.943.844 (2)166.
C38—H40B···Cg8iii0.973.003.751 (3)136.
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1.
references
References top

Collings, J. C., Poon, S.-Y., Droumaguet, C. L., Charlot, M., Katan, C., Pålsson, L. O., Beeby, A., Mosely, J. A., Kaiser, H. M., Kaufmann, D., Wong, W.-Y., Blanchard-Desce, M. & Marder, T. B. (2009). Chem. Eur. J. 15, 198–208.

Dolenský, B., Elguero, J., Král, V., Pardo, C. & Valík, M. (2007). Adv. Heterocycl. Chem. 93, 1–56.

Jäkle, F. (2010). Chem. Rev. 110, 3985–4022.

Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Sergeyev, S. (2009). Helv. Chim. Acta, 92, 415–444.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shirota, Y. & Noda, T. (1998). J. Am. Chem. Soc. 120, 9714–9715.

Tröger, J. (1887). J. Prakt. Chem. 36, 225–245.

Valík, M., Strongin, R. M. & Král, V. (2005). Supramol. Chem. 17, 347–367.

Xin, Q., Tao, X. T., Wang, F. Z., Sun, J. L., Zou, D. C., Wang, F. J., Liu, H. J., Liu, Z. & Jiang, M. H. (2008). Org. Electron. 9, 1076–1086.

Yuan, C. X., Tao, X. T., Ren, Y., Yang, J. X., Yu, W. T., Wang, L. & Jiang, M. H. (2007). J. Phys. Chem. C, 111, 12811–12816.

Yuan, C. X., Xin, Q., Liu, H. J., Wang, L., Jiang, M. H. & Tao, X. T. (2011). Sci. Chin. Chem. 54, 587–595.

Zhao, C. H., Wakamiya, A., Inukai, Y. & Yamaguchi, S. (2006). J. Am. Chem. Soc. 128, 15934–15935.