metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­aqua­bis­­[bis­­(pyridin-3-yl)methanone-κN]manganese(II) bis­­(perchlorate)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: binliu92@yahoo.cn

(Received 17 November 2011; accepted 3 December 2011; online 10 December 2011)

In the title complex, [Mn(C11H8N2O)2(H2O)4](ClO4)2, the Mn2+ ion is located on an inversion center with the slightly distorted N2O4 octa­hedral coordination sphere comprising N-atom donors from two monodentate trans-related bis­(pyridin-3-yl)methanone ligands and four water ligands. The two perchlorate anions are linked to the mononuclear complex mol­ecule through water O—H⋯O hydrogen bonds while inter-complex water O—H⋯N(pyridine) inter­actions form an infinite chain structure extending along the b axis. The perchlorate anions also function as inter-unit links through water O—H⋯O hydrogen bonds which, together with water O—H⋯O(carbon­yl) inter­actions, give a three-dimensional framework structure.

Related literature

For background to coordination chemistry based on pyridyl­methanone derivatives, see: Huang et al. (2003[Huang, W. L., Lee, J. R., Shi, S. Y. & Tsai, C. Y. (2003). Transition Met. Chem. 28, 381-388.]); Chen et al. (2005[Chen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766-768.]); For transition metal complexes of bis­(pyridin-3-yl)methanone, see: Zhang (2011[Zhang, F. (2011). Acta Cryst. E67, m1764.]); Chen & Mak (2005[Chen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1-6.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H8N2O)2(H2O)4](ClO4)2

  • Mr = 694.29

  • Monoclinic, P 21 /n

  • a = 8.410 (2) Å

  • b = 11.962 (3) Å

  • c = 14.386 (4) Å

  • β = 95.476 (5)°

  • V = 1440.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 296 K

  • 0.45 × 0.32 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.572, Tmax = 1.000

  • 7576 measured reflections

  • 2529 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.143

  • S = 1.04

  • 2529 reflections

  • 196 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N1i 0.90 1.82 2.704 (4) 169
O2W—H2WA⋯O5ii 0.89 2.01 2.889 (5) 171
O2W—H2WB⋯O4 0.89 2.01 2.876 (4) 162
O1W—H1WB⋯O1iii 0.94 2.19 2.782 (3) 120
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coordination chemistry of the pyridyl ketone derivatives has attracted much attention due to the angular-shaped C(sp2)—CO—C(sp2) moiety and the rotatable C—C σ bonds to the pyridyl groups (Huang et al., 2003; Chen et al., 2005). Recently, we reported the zigzag chain structure of the zinc(II) complex with bis(pyridin-3-yl)methanone (Zhang, 2011). Herein, we report the structure of a new mononuclear complex of this ligand with manganese(II), the title complex [Mn(C11H12N2O)2(H2O)4](ClO4)2.

In this complex, the Mn2+ ion is located on an inversion center with the slightly distorted N2O4 octahedral coordination sphere comprising N-atom donors from two monodentate trans-related bis(pyridine-3-yl)methanone ligands and four water ligands (Fig. 1). This is significantly different from that found in the polymeric complex [(CuL2)(ClO4)2]n [L = bis(pyridin-3-yl)methanone], in which the N4O2 distorted octahedral Cu2+ center is surrounded by four equatorial pyridyl N-atom donors and two axially related perchlorate O-atoms (Chen et al., 2005). In the present structure, the two perchlorate anions are linked to the mononuclear complex moiety through water O2W—H···O4 hydrogen bonds (Table 1) while inter-complex water O1W—H···N1(pyridyl) interactions form an infinite chain structure extending along the b axis (Fig. 2). The perchlorate anions also function as inter-unit links through water O2W—H···O4/O5 hydrogen bonds which with water O1W—H··· O1(carbonyl) interactions give a three-dimensional framework structure.

Related literature top

For background to coordination chemistry based on pyridylmethanone derivatives, see: Huang et al. (2003); Chen et al. (2005); For transition metal complexes of bis(pyridin-3-yl)methanone, see: Zhang (2011); Chen & Mak (2005).

Experimental top

Bis(pyridin-3-yl)methanone was prepared according to the previously reported procedure (Chen & Mak 2005). The title complex was synthesized by reacting the ligand (19 mg, 0.1 mmol) with Mn(ClO4)2 . 6H2O (36 mg, 0.1 mmol) in 5 ml of methanol followed by the addition of 1 ml of deionized water. The clear solution obtained was stirred at room temperature for three hours, filtered and the filtrate left to slowly evaporate at room temperature. The block-like crystals were deposited after about three weeks (22.9 mg, 66% yield based on the ligand).

Refinement top

All H atoms were located in the difference electron density maps but were placed in idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C or O).

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title complex showing the atom-numbering scheme, with displacement ellipsoids shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry codes: (i) -x+1, -y+1, -z+1.
[Figure 2] Fig. 2. The infinite chain structure constructed through O—H···N interactions, extending along the b axial direction. All H atoms except those of the water molecules are omitted. Hydrogen bonds are shown as dashed lines.
trans-Tetraaquabis[bis(pyridin-3-yl)methanone-κN]manganese(II) bis(perchlorate) top
Crystal data top
[Mn(C11H8N2O)2(H2O)4](ClO4)2F(000) = 710
Mr = 694.29Dx = 1.601 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 261 reflections
a = 8.410 (2) Åθ = 2.2–27.2°
b = 11.962 (3) ŵ = 0.72 mm1
c = 14.386 (4) ÅT = 296 K
β = 95.476 (5)°Block, colorless
V = 1440.6 (6) Å30.45 × 0.32 × 0.25 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2529 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 109
Tmin = 0.572, Tmax = 1.000k = 1314
7576 measured reflectionsl = 817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0816P)2] P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.48 e Å3
4 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Mn(C11H8N2O)2(H2O)4](ClO4)2V = 1440.6 (6) Å3
Mr = 694.29Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.410 (2) ŵ = 0.72 mm1
b = 11.962 (3) ÅT = 296 K
c = 14.386 (4) Å0.45 × 0.32 × 0.25 mm
β = 95.476 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1853 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 1.000Rint = 0.076
7576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0504 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
2529 reflectionsΔρmin = 0.51 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.0230 (3)
O10.1206 (3)0.9254 (2)0.26771 (19)0.0445 (8)
N10.3187 (5)1.1514 (3)0.4615 (3)0.0486 (10)
N20.2861 (3)0.6001 (2)0.4305 (2)0.0298 (7)
C10.3036 (6)1.1271 (4)0.5509 (3)0.0560 (13)
H1A0.33051.18160.59580.067*
C20.2504 (6)1.0259 (4)0.5794 (3)0.0587 (14)
H2A0.24261.01220.64250.070*
C30.2084 (5)0.9447 (3)0.5142 (3)0.0443 (11)
H3A0.17210.87530.53220.053*
C40.2211 (4)0.9681 (3)0.4213 (3)0.0296 (9)
C50.2765 (5)1.0732 (3)0.3991 (3)0.0428 (11)
H5A0.28431.08950.33650.051*
C60.1683 (4)0.8891 (3)0.3445 (3)0.0304 (9)
C70.1633 (4)0.7661 (3)0.3635 (2)0.0272 (8)
C80.2842 (4)0.7106 (3)0.4172 (3)0.0300 (9)
H8A0.36840.75260.44550.036*
C90.1591 (4)0.5423 (3)0.3913 (3)0.0391 (10)
H9A0.15530.46560.40150.047*
C100.0360 (5)0.5911 (3)0.3373 (3)0.0500 (13)
H10A0.04870.54780.31130.060*
C110.0373 (5)0.7041 (3)0.3213 (3)0.0403 (11)
H11A0.04420.73820.28310.048*
Cl10.58846 (12)0.78266 (8)0.19059 (7)0.0363 (3)
O20.4655 (4)0.8174 (4)0.2446 (3)0.0884 (13)
O30.5324 (4)0.7861 (3)0.0946 (2)0.0706 (11)
O40.6421 (5)0.6736 (3)0.2170 (2)0.0752 (12)
O50.7196 (4)0.8584 (3)0.2095 (3)0.0671 (10)
O1W0.5725 (3)0.6446 (2)0.58278 (18)0.0372 (7)
O2W0.6431 (3)0.5430 (2)0.38484 (19)0.0429 (7)
H1WA0.60900.71460.57610.064*
H2WA0.68210.48150.36060.064*
H2WB0.62150.58650.33510.064*
H1WB0.51470.64400.63520.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0316 (5)0.0164 (4)0.0206 (4)0.0026 (3)0.0008 (3)0.0006 (3)
O10.069 (2)0.0323 (15)0.0293 (16)0.0054 (14)0.0088 (14)0.0023 (13)
N10.075 (3)0.0299 (19)0.041 (2)0.0167 (18)0.0046 (19)0.0002 (16)
N20.0303 (17)0.0231 (17)0.0355 (19)0.0009 (13)0.0006 (14)0.0005 (14)
C10.087 (4)0.037 (3)0.043 (3)0.017 (2)0.001 (3)0.010 (2)
C20.107 (4)0.043 (3)0.027 (2)0.024 (3)0.008 (3)0.001 (2)
C30.071 (3)0.029 (2)0.033 (2)0.011 (2)0.004 (2)0.0025 (18)
C40.037 (2)0.0231 (18)0.029 (2)0.0018 (16)0.0037 (17)0.0006 (16)
C50.066 (3)0.033 (2)0.029 (2)0.007 (2)0.004 (2)0.0059 (18)
C60.035 (2)0.025 (2)0.031 (2)0.0033 (16)0.0004 (17)0.0002 (16)
C70.029 (2)0.027 (2)0.026 (2)0.0007 (15)0.0037 (16)0.0037 (16)
C80.030 (2)0.025 (2)0.034 (2)0.0047 (15)0.0026 (17)0.0045 (16)
C90.037 (2)0.025 (2)0.055 (3)0.0073 (18)0.004 (2)0.0016 (19)
C100.030 (2)0.033 (2)0.083 (4)0.0073 (18)0.013 (2)0.009 (2)
C110.032 (2)0.034 (2)0.053 (3)0.0036 (18)0.008 (2)0.005 (2)
Cl10.0444 (6)0.0336 (6)0.0316 (6)0.0038 (4)0.0070 (4)0.0028 (4)
O20.067 (3)0.130 (4)0.075 (3)0.023 (2)0.040 (2)0.003 (3)
O30.097 (3)0.073 (2)0.039 (2)0.025 (2)0.0151 (19)0.0047 (17)
O40.123 (3)0.0360 (18)0.064 (3)0.012 (2)0.003 (2)0.0135 (17)
O50.061 (2)0.058 (2)0.082 (3)0.0116 (17)0.0004 (19)0.0085 (19)
O1W0.0595 (18)0.0210 (13)0.0305 (15)0.0106 (12)0.0009 (13)0.0003 (11)
O2W0.0547 (18)0.0373 (16)0.0393 (17)0.0002 (14)0.0173 (14)0.0067 (13)
Geometric parameters (Å, º) top
Mn1—O1Wi2.155 (2)C5—H5A0.9300
Mn1—O1W2.155 (2)C6—C71.499 (5)
Mn1—O2W2.199 (3)C7—C111.386 (5)
Mn1—O2Wi2.199 (3)C7—C81.386 (5)
Mn1—N2i2.307 (3)C8—H8A0.9300
Mn1—N22.307 (3)C9—C101.365 (6)
O1—C61.218 (4)C9—H9A0.9300
N1—C51.321 (5)C10—C111.371 (6)
N1—C11.337 (6)C10—H10A0.9300
N2—C81.336 (4)C11—H11A0.9300
N2—C91.350 (4)Cl1—O21.414 (4)
C1—C21.367 (6)Cl1—O31.416 (3)
C1—H1A0.9300Cl1—O41.420 (3)
C2—C31.374 (6)Cl1—O51.434 (3)
C2—H2A0.9300O1W—H1WA0.9000
C3—C41.379 (5)O1W—H1WB0.9400
C3—H3A0.9300O2W—H2WA0.8900
C4—C51.389 (5)O2W—H2WB0.8900
C4—C61.489 (5)
O1Wi—Mn1—O1W180.00 (7)N1—C5—H5A118.0
O1Wi—Mn1—O2W85.27 (10)C4—C5—H5A118.0
O1W—Mn1—O2W94.73 (10)O1—C6—C4119.8 (3)
O1Wi—Mn1—O2Wi94.73 (10)O1—C6—C7120.1 (3)
O1W—Mn1—O2Wi85.27 (10)C4—C6—C7119.9 (3)
O2W—Mn1—O2Wi180.0C11—C7—C8118.6 (3)
O1Wi—Mn1—N2i89.47 (10)C11—C7—C6118.6 (3)
O1W—Mn1—N2i90.53 (10)C8—C7—C6122.7 (3)
O2W—Mn1—N2i89.29 (11)N2—C8—C7123.5 (3)
O2Wi—Mn1—N2i90.71 (11)N2—C8—H8A118.2
O1Wi—Mn1—N290.53 (10)C7—C8—H8A118.2
O1W—Mn1—N289.47 (10)N2—C9—C10123.1 (4)
O2W—Mn1—N290.71 (11)N2—C9—H9A118.5
O2Wi—Mn1—N289.29 (11)C10—C9—H9A118.5
N2i—Mn1—N2180.000 (1)C9—C10—C11120.0 (4)
C5—N1—C1117.2 (4)C9—C10—H10A120.0
C8—N2—C9116.6 (3)C11—C10—H10A120.0
C8—N2—Mn1125.0 (2)C10—C11—C7118.2 (4)
C9—N2—Mn1117.9 (2)C10—C11—H11A120.9
N1—C1—C2123.0 (4)C7—C11—H11A120.9
N1—C1—H1A118.5O2—Cl1—O3109.5 (2)
C2—C1—H1A118.5O2—Cl1—O4110.7 (3)
C1—C2—C3119.4 (4)O3—Cl1—O4110.8 (2)
C1—C2—H2A120.3O2—Cl1—O5107.5 (2)
C3—C2—H2A120.3O3—Cl1—O5110.2 (2)
C2—C3—C4118.7 (4)O4—Cl1—O5108.1 (2)
C2—C3—H3A120.6Mn1—O1W—H1WA140.3
C4—C3—H3A120.6Mn1—O1W—H1WB107.0
C3—C4—C5117.7 (4)H1WA—O1W—H1WB108
C3—C4—C6123.1 (3)Mn1—O2W—H2WA110.5
C5—C4—C6119.1 (3)Mn1—O2W—H2WB131.2
N1—C5—C4124.0 (4)H2WA—O2W—H2WB102.9
O1Wi—Mn1—N2—C8150.3 (3)C5—C4—C6—O125.7 (6)
O1W—Mn1—N2—C829.7 (3)C3—C4—C6—C725.7 (6)
O2W—Mn1—N2—C865.0 (3)C5—C4—C6—C7158.5 (4)
O2Wi—Mn1—N2—C8115.0 (3)O1—C6—C7—C1135.3 (5)
O1Wi—Mn1—N2—C922.3 (3)C4—C6—C7—C11140.5 (4)
O1W—Mn1—N2—C9157.7 (3)O1—C6—C7—C8141.0 (4)
O2W—Mn1—N2—C9107.5 (3)C4—C6—C7—C843.3 (5)
O2Wi—Mn1—N2—C972.5 (3)C9—N2—C8—C72.4 (6)
C5—N1—C1—C21.4 (8)Mn1—N2—C8—C7170.3 (3)
N1—C1—C2—C30.7 (9)C11—C7—C8—N20.1 (6)
C1—C2—C3—C40.1 (8)C6—C7—C8—N2176.1 (4)
C2—C3—C4—C50.2 (7)C8—N2—C9—C102.5 (6)
C2—C3—C4—C6175.6 (4)Mn1—N2—C9—C10170.6 (4)
C1—N1—C5—C41.3 (7)N2—C9—C10—C110.4 (7)
C3—C4—C5—N10.5 (7)C9—C10—C11—C71.9 (7)
C6—C4—C5—N1176.5 (4)C8—C7—C11—C102.0 (6)
C3—C4—C6—O1150.1 (4)C6—C7—C11—C10178.4 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N1ii0.901.822.704 (4)169
O2W—H2WA···O5iii0.892.012.889 (5)171
O2W—H2WB···O40.892.012.876 (4)162
O1W—H1WB···O1iv0.942.192.782 (3)120
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C11H8N2O)2(H2O)4](ClO4)2
Mr694.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.410 (2), 11.962 (3), 14.386 (4)
β (°) 95.476 (5)
V3)1440.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.45 × 0.32 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.572, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7576, 2529, 1853
Rint0.076
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.04
No. of reflections2529
No. of parameters196
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.51

Computer programs: APEX2 (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N1i0.901.822.704 (4)169
O2W—H2WA···O5ii0.892.012.889 (5)171
O2W—H2WB···O40.892.012.876 (4)162
O1W—H1WB···O1iii0.942.192.782 (3)120
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Beijing Municipal Education Commission.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationChen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766–768.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, W. L., Lee, J. R., Shi, S. Y. & Tsai, C. Y. (2003). Transition Met. Chem. 28, 381–388.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, F. (2011). Acta Cryst. E67, m1764.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds