organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (2R,3S)-2-benzoyl-3-(4-bromo­phen­yl)-4-nitro­butano­ate

aCatalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bHangzhou Minsheng Pharmaceutical Group Co. Ltd, Hangzhou, People's Republic of China
*Correspondence e-mail: chrc@zjut.edu.cn

(Received 29 November 2011; accepted 17 January 2012; online 21 January 2012)

The title compoud, C19H18BrNO5, was synthesized by an organocatalytic reaction. The aymmetric unit contains two independent mol­ecules, in each of which the carbon between the two carbonyl groups adopts an R configuration, while the adjacent C atom has an S configuration. The dihedral angle between the two benzene rings is different in the two mol­ecules [11.64 (3) and 58.96 (4)°].

Related literature

For the asymmetric synthesis of the title compound, see: Bae et al. (2011[Bae, H. Y., Some, S., Oh, J. S., Lee, Y. S. & Song, C. E. (2011). Chem. Commun. 47, 9621-9623.]); Malerich et al. (2008[Malerich, J. P., Hagihara, K. & Rawal, V. H. (2008). J. Am. Chem. Soc. 130, 14416-14417.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18BrNO5

  • Mr = 420.25

  • Monoclinic, P 21

  • a = 5.7558 (3) Å

  • b = 21.6262 (9) Å

  • c = 15.1337 (7) Å

  • β = 93.720 (1)°

  • V = 1879.81 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 296 K

  • 0.48 × 0.30 × 0.27 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.346, Tmax = 0.549

  • 16125 measured reflections

  • 7326 independent reflections

  • 4316 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.00

  • 7326 reflections

  • 469 parameters

  • 27 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3541 Friedel pairs

  • Flack parameter: −0.013 (9)

Data collection: PROCESS-AUTO (Rigaku, 2007[Rigaku (2007). PROCESS-AUTO and CrystalClear. Rigaku Americas, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Rigaku, 2007[Rigaku (2007). PROCESS-AUTO and CrystalClear. Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organocatalytic Michael addition of 1,3-dicarbonyl compounds to nitroolefins has recently been extensively explored because of its offering an extremely effective way to synthesize a variety of useful chiral functionalized organic molecules. The title compound, which could be readily synthesized through organocatalytic Michael reaction of ethyl 3-oxo-3-phenylpropanoate to (E)-1-bromo-4-(2-nitrovinyl)benzene, could act as intermediate in organic and natural product synthesis. In this article, the crystal structure of the title compoud (2R,3S)-ethyl 2-benzoyl-3-(4-bromophenyl)-4-nitrobutanoate was determined (Fig. 1). The aymmetric unit has two independent molecules, in each of which the carbon between the two carbonyl groups adopts an R conformation, while the adjacent carbon atom is S conformation. In the two molecules, the dihedral angle between the two benzene rings differs [11.64 (3) and 58.96 (4)°].

Related literature top

For the asymmetric synthesis of the title compound, see: Bae et al. (2011); Malerich et al. (2008)

Experimental top

To a solution of (E)-1-bromo-4-(2-nitrovinyl)benzene (1 mmol) and ethyl 3-oxo-3-phenylpropanoate (1 mmol) in 1,4-Dioxane (3 ml) was added 3-((1S)-(6-methoxyquinolin-4-yl) (8-vinylquinuclidin-2-yl)methylamino)-4- ((S)-1-phenylethylamino)cyclobut -3-ene-1,2-dione(0.025 mmol) as catalyst, and the mixture was stirred at room temperature for 12 h (monitored by TLC). Then the solvent was distilled under vacuum, and the residue was purified by flash column chromatography (silica gel, Hex/AcOEt, v/v, 3:1) giving the title compound. Single crystals were obtained by slow evaporation of a CH2Cl2 and iPrOH solution.

Refinement top

The carbon atoms of the ethyl groups (C11A C12A C11B C12B) were restrained to be approximately isotropic. And the C—C bond lengths of C11A—C12A and C11B—C12B were restrained to a target value of 1.535 Å, with a standard deviation of 0.001. H atoms were placed in calculated position with C—H=0.98 Å (sp), C—H=0.97 Å (sp2), C—H=0.96 Å (sp3), C—H=0.93 Å (aromatic) and with Uiso(H)=1.2Ueq of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2007); cell refinement: PROCESS-AUTO (Rigaku, 2007); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. One of the structure (a) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. One of the structure (b) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular packing of the title compound.
Ethyl (2R,3S)-2-benzoyl-3-(4-bromophenyl)-4-nitrobutanoate top
Crystal data top
C19H18BrNO5F(000) = 856
Mr = 420.25Dx = 1.485 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11156 reflections
a = 5.7558 (3) Åθ = 3.1–27.4°
b = 21.6262 (9) ŵ = 2.22 mm1
c = 15.1337 (7) ÅT = 296 K
β = 93.720 (1)°Needle, colorless
V = 1879.81 (15) Å30.48 × 0.30 × 0.27 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
7326 independent reflections
Radiation source: rotating anode4316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.00 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 76
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2626
Tmin = 0.346, Tmax = 0.549l = 1818
16125 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3123P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
7326 reflectionsΔρmax = 0.42 e Å3
469 parametersΔρmin = 0.54 e Å3
27 restraintsAbsolute structure: Flack (1983), 3541 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (9)
Crystal data top
C19H18BrNO5V = 1879.81 (15) Å3
Mr = 420.25Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.7558 (3) ŵ = 2.22 mm1
b = 21.6262 (9) ÅT = 296 K
c = 15.1337 (7) Å0.48 × 0.30 × 0.27 mm
β = 93.720 (1)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
7326 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4316 reflections with I > 2σ(I)
Tmin = 0.346, Tmax = 0.549Rint = 0.043
16125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.42 e Å3
S = 1.00Δρmin = 0.54 e Å3
7326 reflectionsAbsolute structure: Flack (1983), 3541 Friedel pairs
469 parametersAbsolute structure parameter: 0.013 (9)
27 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A1.29441 (11)0.56418 (3)0.17401 (5)0.0918 (3)
O1A0.4552 (6)0.81610 (17)0.4794 (3)0.0671 (11)
O2A0.6040 (7)0.7964 (2)0.2713 (3)0.0736 (11)
O3A0.9340 (7)0.85124 (18)0.2842 (2)0.0662 (10)
O4A0.6867 (9)0.6324 (2)0.5360 (3)0.0795 (12)
O5A1.0065 (11)0.6395 (2)0.6147 (4)0.1024 (17)
N1A0.8595 (10)0.6601 (2)0.5607 (3)0.0626 (12)
C1A0.7975 (8)0.7339 (2)0.4326 (3)0.0424 (11)
H1A0.63210.72270.42880.051*
C2A0.8168 (8)0.8036 (2)0.4127 (3)0.0403 (10)
H2A0.97400.81790.43120.048*
C3A0.6384 (9)0.8405 (2)0.4625 (3)0.0476 (12)
C4A0.6864 (9)0.9065 (2)0.4869 (3)0.0466 (12)
C5A0.5307 (10)0.9361 (3)0.5379 (4)0.0645 (15)
H5A0.40350.91450.55700.077*
C6A0.5620 (12)0.9975 (3)0.5609 (5)0.0782 (19)
H6A0.45381.01780.59360.094*
C7A0.7557 (11)1.0283 (3)0.5348 (4)0.0710 (17)
H7A0.78011.06930.55140.085*
C8A0.9117 (11)0.9994 (3)0.4848 (4)0.0668 (17)
H8A1.03871.02140.46620.080*
C9A0.8838 (9)0.9384 (2)0.4617 (4)0.0568 (14)
H9A0.99430.91850.42970.068*
C10A0.7691 (9)0.8160 (2)0.3148 (4)0.0472 (12)
C11A0.9041 (14)0.8701 (4)0.1943 (5)0.101 (2)
H11A0.86190.91350.19160.121*
H11B0.77820.84660.16470.121*
C12A1.1267 (16)0.8601 (6)0.1466 (8)0.160 (4)
H12A1.10160.87280.08590.240*
H12B1.16820.81710.14900.240*
H12C1.25040.88420.17490.240*
C13A0.8929 (10)0.7242 (2)0.5278 (3)0.0533 (13)
H13A1.05790.73380.53190.064*
H13B0.81670.75290.56580.064*
C14A0.9208 (8)0.6937 (2)0.3675 (3)0.0428 (11)
C15A0.8224 (8)0.6384 (2)0.3383 (3)0.0460 (12)
H15A0.67960.62670.35850.055*
C16A0.9288 (9)0.5998 (3)0.2802 (4)0.0587 (14)
H16A0.85890.56270.26230.070*
C17A1.1408 (8)0.6170 (3)0.2490 (4)0.0524 (13)
C18A1.2407 (9)0.6726 (3)0.2778 (4)0.0575 (14)
H18A1.38300.68440.25740.069*
C19A1.1330 (8)0.7107 (2)0.3363 (3)0.0485 (12)
H19A1.20300.74760.35470.058*
Br1B0.63666 (15)0.41912 (3)1.11381 (5)0.0991 (3)
O1B0.5085 (6)0.70722 (17)0.6957 (2)0.0607 (10)
O2B0.1843 (7)0.6699 (2)0.9555 (3)0.0829 (13)
O3B0.5254 (7)0.7107 (2)0.9220 (2)0.0708 (11)
O4B0.8589 (9)0.5332 (2)0.7336 (4)0.0899 (15)
O5B0.6010 (12)0.4713 (3)0.6777 (5)0.147 (3)
N1B0.6594 (11)0.5201 (3)0.7085 (3)0.0722 (14)
C1B0.5169 (8)0.6042 (2)0.8032 (3)0.0474 (12)
H1B0.66660.62550.80070.057*
C2B0.3228 (8)0.6546 (2)0.8097 (3)0.0450 (11)
H2B0.17090.63510.79620.054*
C3B0.3503 (8)0.7079 (2)0.7448 (3)0.0468 (12)
C4B0.1843 (9)0.7606 (2)0.7434 (3)0.0498 (12)
C5B0.2286 (10)0.8121 (3)0.6921 (4)0.0553 (14)
H5B0.35890.81280.65880.066*
C6B0.0800 (11)0.8622 (3)0.6902 (4)0.0674 (16)
H6B0.11220.89670.65630.081*
C7B0.1159 (10)0.8617 (3)0.7381 (4)0.0611 (15)
H7B0.21710.89530.73560.073*
C8B0.1600 (10)0.8112 (3)0.7895 (4)0.0667 (16)
H8B0.28990.81100.82300.080*
C9B0.0138 (9)0.7608 (3)0.7918 (4)0.0569 (14)
H9B0.04750.72660.82590.068*
C10B0.3312 (10)0.6787 (3)0.9041 (4)0.0555 (13)
C11B0.5567 (14)0.7394 (4)1.0100 (5)0.105 (2)
H11C0.40560.74791.03220.126*
H11D0.63850.77841.00550.126*
C12B0.6951 (17)0.6968 (4)1.0744 (6)0.133 (3)
H12D0.71240.71601.13160.199*
H12E0.84600.68921.05310.199*
H12F0.61380.65821.07890.199*
C13B0.4719 (8)0.5678 (3)0.7169 (3)0.0565 (13)
H13C0.32130.54770.71660.068*
H13D0.46970.59590.66690.068*
C14B0.5342 (7)0.5612 (3)0.8821 (3)0.0459 (11)
C15B0.7338 (8)0.5612 (3)0.9380 (4)0.0590 (13)
H15B0.85110.58960.92870.071*
C16B0.7630 (10)0.5195 (3)1.0080 (4)0.0648 (16)
H16B0.89840.52001.04500.078*
C17B0.5928 (10)0.4783 (3)1.0216 (4)0.0612 (15)
C18B0.3873 (10)0.4772 (3)0.9684 (4)0.0584 (14)
H18B0.26990.44920.97920.070*
C19B0.3612 (9)0.5190 (3)0.8987 (4)0.0546 (13)
H19B0.22460.51860.86240.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0684 (4)0.1068 (6)0.1006 (5)0.0089 (4)0.0095 (4)0.0550 (5)
O1A0.058 (2)0.051 (2)0.095 (3)0.0120 (19)0.029 (2)0.011 (2)
O2A0.077 (3)0.080 (3)0.061 (3)0.012 (2)0.016 (2)0.010 (2)
O3A0.078 (3)0.069 (3)0.052 (2)0.009 (2)0.0129 (19)0.020 (2)
O4A0.110 (3)0.067 (3)0.062 (3)0.026 (3)0.016 (3)0.007 (2)
O5A0.144 (4)0.063 (3)0.096 (4)0.020 (3)0.031 (3)0.020 (3)
N1A0.095 (4)0.043 (3)0.051 (3)0.006 (3)0.005 (3)0.001 (2)
C1A0.052 (3)0.033 (3)0.042 (3)0.004 (2)0.000 (2)0.000 (2)
C2A0.041 (2)0.037 (3)0.043 (3)0.000 (2)0.002 (2)0.000 (2)
C3A0.053 (3)0.038 (3)0.052 (3)0.003 (2)0.007 (3)0.004 (2)
C4A0.057 (3)0.036 (3)0.045 (3)0.003 (2)0.006 (2)0.002 (2)
C5A0.063 (3)0.052 (4)0.081 (4)0.007 (3)0.017 (3)0.004 (3)
C6A0.088 (4)0.054 (4)0.094 (5)0.003 (3)0.019 (4)0.022 (4)
C7A0.085 (4)0.042 (3)0.084 (5)0.003 (3)0.006 (4)0.008 (3)
C8A0.073 (4)0.042 (3)0.085 (5)0.015 (3)0.008 (4)0.001 (3)
C9A0.055 (3)0.041 (3)0.074 (4)0.005 (2)0.004 (3)0.006 (3)
C10A0.054 (3)0.036 (3)0.052 (3)0.001 (2)0.006 (3)0.004 (2)
C11A0.101 (3)0.102 (3)0.100 (3)0.0004 (10)0.0069 (10)0.0018 (10)
C12A0.159 (4)0.161 (4)0.159 (4)0.0003 (10)0.0108 (11)0.0007 (10)
C13A0.075 (3)0.036 (3)0.049 (3)0.006 (2)0.001 (3)0.004 (2)
C14A0.045 (2)0.039 (3)0.043 (3)0.006 (2)0.005 (2)0.002 (2)
C15A0.042 (3)0.040 (3)0.056 (3)0.005 (2)0.002 (2)0.008 (2)
C16A0.052 (3)0.052 (3)0.071 (4)0.000 (3)0.005 (3)0.019 (3)
C17A0.049 (3)0.056 (3)0.050 (3)0.009 (3)0.005 (2)0.005 (3)
C18A0.044 (3)0.062 (4)0.066 (4)0.001 (3)0.000 (3)0.008 (3)
C19A0.044 (3)0.046 (3)0.056 (3)0.003 (2)0.009 (2)0.006 (2)
Br1B0.1217 (6)0.0991 (6)0.0771 (5)0.0286 (5)0.0117 (4)0.0363 (4)
O1B0.065 (2)0.054 (2)0.065 (2)0.0025 (18)0.022 (2)0.0053 (19)
O2B0.081 (3)0.100 (3)0.072 (3)0.003 (3)0.035 (2)0.002 (2)
O3B0.087 (3)0.080 (3)0.044 (2)0.019 (2)0.0017 (19)0.015 (2)
O4B0.067 (3)0.109 (4)0.096 (4)0.022 (3)0.020 (3)0.006 (3)
O5B0.160 (5)0.103 (5)0.167 (6)0.050 (4)0.062 (5)0.078 (5)
N1B0.094 (4)0.070 (4)0.052 (3)0.025 (3)0.002 (3)0.000 (3)
C1B0.045 (3)0.049 (3)0.048 (3)0.004 (2)0.004 (2)0.003 (2)
C2B0.046 (3)0.045 (3)0.044 (3)0.005 (2)0.007 (2)0.002 (2)
C3B0.046 (3)0.044 (3)0.051 (3)0.003 (2)0.008 (2)0.001 (2)
C4B0.049 (3)0.050 (3)0.050 (3)0.002 (2)0.003 (2)0.005 (3)
C5B0.060 (3)0.058 (4)0.049 (3)0.007 (3)0.007 (3)0.009 (3)
C6B0.076 (4)0.066 (4)0.059 (4)0.001 (3)0.008 (3)0.004 (3)
C7B0.059 (3)0.052 (4)0.073 (4)0.006 (3)0.003 (3)0.000 (3)
C8B0.058 (3)0.061 (4)0.083 (4)0.002 (3)0.012 (3)0.002 (3)
C9B0.051 (3)0.056 (4)0.065 (4)0.001 (3)0.007 (3)0.002 (3)
C10B0.060 (3)0.055 (3)0.052 (3)0.004 (3)0.009 (3)0.005 (3)
C11B0.105 (3)0.105 (3)0.104 (3)0.0009 (10)0.0065 (10)0.0009 (10)
C12B0.133 (3)0.133 (3)0.132 (3)0.0001 (10)0.0087 (10)0.0007 (10)
C13B0.061 (3)0.059 (3)0.050 (3)0.009 (3)0.003 (2)0.004 (3)
C14B0.039 (2)0.050 (3)0.047 (3)0.002 (3)0.002 (2)0.001 (3)
C15B0.048 (3)0.070 (4)0.059 (3)0.011 (3)0.002 (3)0.005 (3)
C16B0.053 (3)0.085 (5)0.054 (4)0.010 (3)0.013 (3)0.011 (3)
C17B0.067 (4)0.064 (4)0.052 (3)0.015 (3)0.007 (3)0.009 (3)
C18B0.067 (3)0.050 (3)0.059 (4)0.011 (3)0.009 (3)0.004 (3)
C19B0.051 (3)0.061 (3)0.050 (3)0.004 (3)0.005 (2)0.006 (3)
Geometric parameters (Å, º) top
Br1A—C17A1.872 (5)Br1B—C17B1.899 (6)
O1A—C3A1.221 (6)O1B—C3B1.212 (5)
O2A—C10A1.197 (6)O2B—C10B1.201 (6)
O3A—C10A1.324 (6)O3B—C10B1.328 (7)
O3A—C11A1.420 (9)O3B—C11B1.470 (9)
O4A—N1A1.201 (6)O4B—N1B1.219 (7)
O5A—N1A1.222 (6)O5B—N1B1.193 (7)
N1A—C13A1.490 (7)N1B—C13B1.505 (7)
C1A—C13A1.522 (7)C1B—C14B1.510 (7)
C1A—C14A1.524 (6)C1B—C13B1.533 (7)
C1A—C2A1.542 (6)C1B—C2B1.568 (7)
C1A—H1A0.9800C1B—H1B0.9800
C2A—C10A1.513 (7)C2B—C10B1.518 (7)
C2A—C3A1.536 (7)C2B—C3B1.530 (7)
C2A—H2A0.9800C2B—H2B0.9800
C3A—C4A1.497 (7)C3B—C4B1.486 (7)
C4A—C5A1.377 (7)C4B—C5B1.392 (7)
C4A—C9A1.403 (7)C4B—C9B1.395 (7)
C5A—C6A1.382 (8)C5B—C6B1.380 (8)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.379 (9)C6B—C7B1.379 (8)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.363 (8)C7B—C8B1.375 (8)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C9A1.371 (7)C8B—C9B1.376 (8)
C8A—H8A0.9300C8B—H8B0.9300
C9A—H9A0.9300C9B—H9B0.9300
C11A—C12A1.527 (3)C11B—C12B1.528 (3)
C11A—H11A0.9700C11B—H11C0.9700
C11A—H11B0.9700C11B—H11D0.9700
C12A—H12A0.9600C12B—H12D0.9600
C12A—H12B0.9600C12B—H12E0.9600
C12A—H12C0.9600C12B—H12F0.9600
C13A—H13A0.9700C13B—H13C0.9700
C13A—H13B0.9700C13B—H13D0.9700
C14A—C15A1.384 (7)C14B—C15B1.382 (7)
C14A—C19A1.387 (7)C14B—C19B1.386 (7)
C15A—C16A1.382 (7)C15B—C16B1.393 (8)
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.387 (7)C16B—C17B1.349 (8)
C16A—H16A0.9300C16B—H16B0.9300
C17A—C18A1.389 (7)C17B—C18B1.387 (8)
C18A—C19A1.385 (7)C18B—C19B1.390 (7)
C18A—H18A0.9300C18B—H18B0.9300
C19A—H19A0.9300C19B—H19B0.9300
C10A—O3A—C11A117.1 (5)C10B—O3B—C11B117.2 (5)
O4A—N1A—O5A123.3 (5)O5B—N1B—O4B124.2 (6)
O4A—N1A—C13A118.9 (5)O5B—N1B—C13B117.1 (6)
O5A—N1A—C13A117.7 (5)O4B—N1B—C13B118.7 (6)
C13A—C1A—C14A112.3 (4)C14B—C1B—C13B110.9 (4)
C13A—C1A—C2A107.1 (4)C14B—C1B—C2B112.9 (4)
C14A—C1A—C2A112.8 (4)C13B—C1B—C2B109.1 (4)
C13A—C1A—H1A108.2C14B—C1B—H1B107.9
C14A—C1A—H1A108.2C13B—C1B—H1B107.9
C2A—C1A—H1A108.2C2B—C1B—H1B107.9
C10A—C2A—C3A107.6 (4)C10B—C2B—C3B110.3 (4)
C10A—C2A—C1A110.8 (4)C10B—C2B—C1B108.5 (4)
C3A—C2A—C1A110.7 (4)C3B—C2B—C1B112.3 (4)
C10A—C2A—H2A109.2C10B—C2B—H2B108.5
C3A—C2A—H2A109.2C3B—C2B—H2B108.5
C1A—C2A—H2A109.2C1B—C2B—H2B108.5
O1A—C3A—C4A120.5 (5)O1B—C3B—C4B120.6 (4)
O1A—C3A—C2A119.5 (4)O1B—C3B—C2B119.9 (4)
C4A—C3A—C2A119.9 (4)C4B—C3B—C2B119.6 (4)
C5A—C4A—C9A119.5 (5)C5B—C4B—C9B118.4 (5)
C5A—C4A—C3A117.7 (5)C5B—C4B—C3B118.7 (4)
C9A—C4A—C3A122.8 (5)C9B—C4B—C3B122.8 (5)
C4A—C5A—C6A120.6 (6)C6B—C5B—C4B120.3 (5)
C4A—C5A—H5A119.7C6B—C5B—H5B119.8
C6A—C5A—H5A119.7C4B—C5B—H5B119.8
C7A—C6A—C5A119.1 (6)C7B—C6B—C5B120.7 (6)
C7A—C6A—H6A120.4C7B—C6B—H6B119.7
C5A—C6A—H6A120.4C5B—C6B—H6B119.7
C8A—C7A—C6A120.8 (6)C6B—C7B—C8B119.4 (5)
C8A—C7A—H7A119.6C6B—C7B—H7B120.3
C6A—C7A—H7A119.6C8B—C7B—H7B120.3
C7A—C8A—C9A120.8 (6)C9B—C8B—C7B120.6 (5)
C7A—C8A—H8A119.6C9B—C8B—H8B119.7
C9A—C8A—H8A119.6C7B—C8B—H8B119.7
C8A—C9A—C4A119.2 (5)C8B—C9B—C4B120.6 (5)
C8A—C9A—H9A120.4C8B—C9B—H9B119.7
C4A—C9A—H9A120.4C4B—C9B—H9B119.7
O2A—C10A—O3A124.9 (5)O2B—C10B—O3B124.7 (5)
O2A—C10A—C2A124.2 (5)O2B—C10B—C2B125.0 (5)
O3A—C10A—C2A110.9 (4)O3B—C10B—C2B110.3 (4)
O3A—C11A—C12A111.1 (7)O3B—C11B—C12B110.5 (7)
O3A—C11A—H11A109.4O3B—C11B—H11C109.5
C12A—C11A—H11A109.4C12B—C11B—H11C109.5
O3A—C11A—H11B109.4O3B—C11B—H11D109.5
C12A—C11A—H11B109.4C12B—C11B—H11D109.5
H11A—C11A—H11B108.0H11C—C11B—H11D108.1
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
N1A—C13A—C1A113.5 (4)N1B—C13B—C1B110.0 (4)
N1A—C13A—H13A108.9N1B—C13B—H13C109.7
C1A—C13A—H13A108.9C1B—C13B—H13C109.7
N1A—C13A—H13B108.9N1B—C13B—H13D109.7
C1A—C13A—H13B108.9C1B—C13B—H13D109.7
H13A—C13A—H13B107.7H13C—C13B—H13D108.2
C15A—C14A—C19A118.1 (4)C15B—C14B—C19B117.8 (5)
C15A—C14A—C1A120.1 (4)C15B—C14B—C1B119.6 (4)
C19A—C14A—C1A121.8 (4)C19B—C14B—C1B122.5 (4)
C16A—C15A—C14A122.3 (5)C14B—C15B—C16B121.4 (5)
C16A—C15A—H15A118.8C14B—C15B—H15B119.3
C14A—C15A—H15A118.8C16B—C15B—H15B119.3
C15A—C16A—C17A119.4 (5)C17B—C16B—C15B119.3 (5)
C15A—C16A—H16A120.3C17B—C16B—H16B120.3
C17A—C16A—H16A120.3C15B—C16B—H16B120.3
C16A—C17A—C18A118.7 (5)C16B—C17B—C18B121.6 (5)
C16A—C17A—Br1A120.2 (4)C16B—C17B—Br1B119.6 (4)
C18A—C17A—Br1A121.0 (4)C18B—C17B—Br1B118.8 (5)
C19A—C18A—C17A121.4 (5)C17B—C18B—C19B118.3 (5)
C19A—C18A—H18A119.3C17B—C18B—H18B120.8
C17A—C18A—H18A119.3C19B—C18B—H18B120.8
C18A—C19A—C14A120.1 (5)C14B—C19B—C18B121.5 (5)
C18A—C19A—H19A120.0C14B—C19B—H19B119.2
C14A—C19A—H19A120.0C18B—C19B—H19B119.2
C13A—C1A—C2A—C10A169.2 (4)C14B—C1B—C2B—C10B41.7 (5)
C14A—C1A—C2A—C10A45.2 (5)C13B—C1B—C2B—C10B165.5 (4)
C13A—C1A—C2A—C3A71.5 (5)C14B—C1B—C2B—C3B164.0 (4)
C14A—C1A—C2A—C3A164.5 (4)C13B—C1B—C2B—C3B72.2 (5)
C10A—C2A—C3A—O1A92.0 (6)C10B—C2B—C3B—O1B121.8 (5)
C1A—C2A—C3A—O1A29.2 (7)C1B—C2B—C3B—O1B0.6 (7)
C10A—C2A—C3A—C4A85.8 (6)C10B—C2B—C3B—C4B57.3 (6)
C1A—C2A—C3A—C4A153.0 (4)C1B—C2B—C3B—C4B178.5 (4)
O1A—C3A—C4A—C5A7.5 (8)O1B—C3B—C4B—C5B7.0 (7)
C2A—C3A—C4A—C5A174.6 (5)C2B—C3B—C4B—C5B172.1 (5)
O1A—C3A—C4A—C9A173.9 (5)O1B—C3B—C4B—C9B173.3 (5)
C2A—C3A—C4A—C9A3.9 (8)C2B—C3B—C4B—C9B7.6 (7)
C9A—C4A—C5A—C6A2.9 (9)C9B—C4B—C5B—C6B0.6 (8)
C3A—C4A—C5A—C6A178.4 (6)C3B—C4B—C5B—C6B179.1 (5)
C4A—C5A—C6A—C7A2.3 (10)C4B—C5B—C6B—C7B0.9 (9)
C5A—C6A—C7A—C8A1.8 (10)C5B—C6B—C7B—C8B1.3 (9)
C6A—C7A—C8A—C9A2.1 (10)C6B—C7B—C8B—C9B1.5 (9)
C7A—C8A—C9A—C4A2.8 (9)C7B—C8B—C9B—C4B1.3 (9)
C5A—C4A—C9A—C8A3.2 (9)C5B—C4B—C9B—C8B0.9 (8)
C3A—C4A—C9A—C8A178.3 (5)C3B—C4B—C9B—C8B178.9 (5)
C11A—O3A—C10A—O2A4.1 (8)C11B—O3B—C10B—O2B2.7 (8)
C11A—O3A—C10A—C2A176.0 (5)C11B—O3B—C10B—C2B177.7 (5)
C3A—C2A—C10A—O2A71.6 (6)C3B—C2B—C10B—O2B125.2 (6)
C1A—C2A—C10A—O2A49.5 (7)C1B—C2B—C10B—O2B111.3 (6)
C3A—C2A—C10A—O3A108.4 (5)C3B—C2B—C10B—O3B55.2 (6)
C1A—C2A—C10A—O3A130.5 (4)C1B—C2B—C10B—O3B68.3 (5)
C10A—O3A—C11A—C12A132.7 (7)C10B—O3B—C11B—C12B93.6 (7)
O4A—N1A—C13A—C1A34.8 (7)O5B—N1B—C13B—C1B141.9 (6)
O5A—N1A—C13A—C1A148.1 (5)O4B—N1B—C13B—C1B37.6 (7)
C14A—C1A—C13A—N1A62.7 (6)C14B—C1B—C13B—N1B56.3 (5)
C2A—C1A—C13A—N1A173.0 (4)C2B—C1B—C13B—N1B178.8 (4)
C13A—C1A—C14A—C15A97.8 (5)C13B—C1B—C14B—C15B122.3 (5)
C2A—C1A—C14A—C15A141.2 (5)C2B—C1B—C14B—C15B114.9 (5)
C13A—C1A—C14A—C19A81.7 (6)C13B—C1B—C14B—C19B54.4 (6)
C2A—C1A—C14A—C19A39.4 (6)C2B—C1B—C14B—C19B68.4 (6)
C19A—C14A—C15A—C16A0.4 (7)C19B—C14B—C15B—C16B1.1 (8)
C1A—C14A—C15A—C16A179.0 (5)C1B—C14B—C15B—C16B175.7 (5)
C14A—C15A—C16A—C17A0.6 (8)C14B—C15B—C16B—C17B0.1 (9)
C15A—C16A—C17A—C18A0.5 (8)C15B—C16B—C17B—C18B1.1 (9)
C15A—C16A—C17A—Br1A177.5 (4)C15B—C16B—C17B—Br1B177.4 (4)
C16A—C17A—C18A—C19A0.2 (8)C16B—C17B—C18B—C19B1.3 (8)
Br1A—C17A—C18A—C19A177.2 (4)Br1B—C17B—C18B—C19B177.2 (4)
C17A—C18A—C19A—C14A0.0 (8)C15B—C14B—C19B—C18B0.9 (8)
C15A—C14A—C19A—C18A0.2 (7)C1B—C14B—C19B—C18B175.8 (5)
C1A—C14A—C19A—C18A179.3 (5)C17B—C18B—C19B—C14B0.3 (8)

Experimental details

Crystal data
Chemical formulaC19H18BrNO5
Mr420.25
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.7558 (3), 21.6262 (9), 15.1337 (7)
β (°) 93.720 (1)
V3)1879.81 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.48 × 0.30 × 0.27
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.346, 0.549
No. of measured, independent and
observed [I > 2σ(I)] reflections
16125, 7326, 4316
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.00
No. of reflections7326
No. of parameters469
No. of restraints27
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.54
Absolute structureFlack (1983), 3541 Friedel pairs
Absolute structure parameter0.013 (9)

Computer programs: PROCESS-AUTO (Rigaku, 2007), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y4110373) and the Foundation of Zhejiang Education Committee (No. Y201018458). We also thank Professor Jian-Ming Gu of Zhejiang University for his help.

References

First citationBae, H. Y., Some, S., Oh, J. S., Lee, Y. S. & Song, C. E. (2011). Chem. Commun. 47, 9621–9623.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMalerich, J. P., Hagihara, K. & Rawal, V. H. (2008). J. Am. Chem. Soc. 130, 14416–14417.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2007). PROCESS-AUTO and CrystalClear. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds