organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­amino­methyl­­idene)sulfonium chloride–thio­urea (3/2)

aLaboratoire Privé de Cristallographie (L.P.C), Kénitra, Morocco.
*Correspondence e-mail: hafid.zouihri@gmail.com

(Received 7 December 2011; accepted 7 December 2011; online 7 January 2012)

The asymetric unit of the title salt, 3CH5N2S+·3Cl·2CH4N2S, contains two mol­ecules of thio­urea, three (diamino­methyl­idene)sulfonium cations and three chloride anions. The crystal packing is stabilized by N—H⋯Cl, N—H⋯S, S—H⋯Cl and S—H⋯S hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of thio­urea salts, see: Xing et al. (1987[Xing, G., Jiang, M., Shao, Z. & Xu, D. (1987). Chin. J. Lasers, 14, 357-360.]); Velsko et al. (1990[Velsko, S. (1990). Laser Program Annual Report, Lawrence Livermore National Laboratory, Livermore, Canada.]).

[Scheme 1]

Experimental

Crystal data
  • 3CH5N2S+·3Cl·2CH4N2S

  • Mr = 489.98

  • Monoclinic, P 21 /c

  • a = 16.3469 (6) Å

  • b = 8.9579 (3) Å

  • c = 16.1505 (5) Å

  • β = 109.105 (2)°

  • V = 2234.72 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.45 × 0.32 × 0.29 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 25994 measured reflections

  • 4885 independent reflections

  • 4190 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.06

  • 4885 reflections

  • 300 parameters

  • 15 restraints

  • All H-atom parameters refined

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S3 0.82 (2) 2.76 (2) 3.5403 (17) 161.9 (18)
N1—H2N⋯Cl1 0.848 (18) 2.474 (18) 3.2683 (16) 156.2 (18)
N10—H17N⋯Cl3i 0.86 (2) 2.45 (2) 3.2261 (17) 152 (2)
N10—H18N⋯Cl1ii 0.85 (2) 2.35 (2) 3.2019 (14) 175 (2)
N2—H3N⋯Cl1 0.815 (18) 2.624 (18) 3.3656 (16) 152.0 (17)
N2—H4N⋯Cl1ii 0.86 (2) 2.45 (2) 3.3060 (17) 174.5 (17)
N3—H5N⋯Cl2 0.86 (2) 2.51 (2) 3.3333 (16) 161 (2)
N3—H6N⋯Cl1iii 0.86 (2) 2.47 (2) 3.2799 (16) 157 (2)
N4—H7N⋯Cl3 0.84 (2) 2.43 (2) 3.2422 (17) 163 (2)
N4—H8N⋯Cl1iii 0.84 (2) 2.57 (2) 3.3327 (16) 151 (2)
N4—H8N⋯S1iv 0.84 (2) 2.83 (2) 3.3571 (16) 123 (2)
N5—H9N⋯S1 0.85 (2) 2.62 (2) 3.4493 (18) 166 (2)
N5—H10N⋯Cl2v 0.91 (2) 2.35 (2) 3.2262 (16) 161 (2)
N6—H11N⋯Cl2vi 0.88 (2) 2.47 (2) 3.3555 (17) 176 (1)
N6—H12N⋯Cl2v 0.88 (2) 2.65 (2) 3.4328 (15) 149 (2)
N7—H13N⋯Cl2 0.86 (2) 2.37 (2) 3.2219 (15) 177 (1)
N7—H14N⋯Cl3vii 0.85 (2) 2.42 (2) 3.2066 (17) 154 (2)
N8—H15N⋯S3viii 0.85 (2) 2.44 (2) 3.2649 (16) 164 (2)
N8—H16N⋯Cl3vii 0.87 (2) 2.39 (2) 3.2036 (17) 156 (2)
N9—H19N⋯Cl3i 0.84 (2) 2.38 (2) 3.1674 (17) 157 (2)
N9—H20N⋯S1vii 0.872 (19) 2.38 (2) 3.2412 (16) 167.7 (19)
S2—H2S⋯Cl2 1.253 (19) 2.315 (19) 3.5612 (6) 172.9 (14)
S4—H4S⋯S3viii 1.24 (2) 2.69 (2) 3.8755 (8) 159.2 (15)
S5—H5S⋯S1vii 1.29 (2) 2.64 (2) 3.8691 (7) 159.3 (16)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) x, y+1, z; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Various semi-organic NLO materials of thiourea were found to have higher mechanical strentgh, chemical stability, large nonlinearity, high resistance to laser induced damage, low angular sensitivity and good mechanical hardness [Xing, et al. 1987 and Velsko, et al. 1990]. Herein we present the crystal structure of the title compound (I).

The assymetric unit of the title salt compound contains two molecules of thiourea (A and B), three cations of (diaminomethylidene)sulfonium (C, D and E) and three chloride anions.

The dihedral angles between the five molecules of the asymmetric unit are: A/B = 11,96 (9)°, A/C = 75,67 (9)°, A/D = 84,56 (9)°, A/E = 85,02 (9)°, B/C = 71.4 (3)°, B/D = 88,34 (9)° and B/E = 73,21 (9)° (Fig. 1).

In the crystal, the components are linked by a combination of thirteen N—H···Cl, five N—H···S, one S—H···Cl and two S—H···S hydrogen bonds into a three-dimensional structure. (Fig. 2 and Table. 1).

Related literature top

For applications of thiourea salts, see: Xing et al. (1987); Velsko et al. (1990).

Experimental top

The title compound was synthetized at ambient temperature by a mixture of 5 mmol s of thiourea and 5 mmol of HCl in ethanolic solution. The solution was slowly evaporated until solvent completely dried and white crystalline salt was obtained.

Suitable transparent crystals for X-ray mesearment were grown from the final product in aqueous solution by slow evaporation method.

Refinement top

All H atoms were located from difference Fourier maps and refined isotrpically, with restained distance N—H = 0.88 (0.02) A.

The highest residual density was found 0.82 A from S4 and the deepest hole 0.74 A from S4.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displace- ment ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Projection of the title compound along the c axis, H-bonds are represented by dashed lines.
(Diaminomethylidene)sulfonium chloride–thiourea (3/2) top
Crystal data top
3CH5N2S+·3Cl·2CH4N2SF(000) = 1016
Mr = 489.98Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 257 reflections
a = 16.3469 (6) Åθ = 1.9–26.7°
b = 8.9579 (3) ŵ = 0.89 mm1
c = 16.1505 (5) ÅT = 100 K
β = 109.105 (2)°Prism, colourless
V = 2234.72 (13) Å30.45 × 0.32 × 0.29 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
4190 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.0°, θmin = 1.3°
ω and ϕ scansh = 1920
25994 measured reflectionsk = 1111
4885 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.030P)2 + 0.6051P]
where P = (Fo2 + 2Fc2)/3
4885 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.45 e Å3
15 restraintsΔρmin = 0.39 e Å3
Crystal data top
3CH5N2S+·3Cl·2CH4N2SV = 2234.72 (13) Å3
Mr = 489.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.3469 (6) ŵ = 0.89 mm1
b = 8.9579 (3) ÅT = 100 K
c = 16.1505 (5) Å0.45 × 0.32 × 0.29 mm
β = 109.105 (2)°
Data collection top
Bruker APEXII CCD detector
diffractometer
4190 reflections with I > 2σ(I)
25994 measured reflectionsRint = 0.036
4885 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02615 restraints
wR(F2) = 0.068All H-atom parameters refined
S = 1.06Δρmax = 0.45 e Å3
4885 reflectionsΔρmin = 0.39 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38413 (9)0.58264 (16)0.27012 (9)0.0213 (3)
C20.25156 (10)0.52767 (18)0.50586 (9)0.0248 (3)
C30.11263 (10)0.86257 (17)0.22690 (10)0.0243 (3)
C40.07611 (10)0.32825 (17)0.03972 (10)0.0256 (3)
C50.56391 (11)0.66084 (17)0.01498 (10)0.0274 (3)
Cl10.36083 (2)0.16969 (4)0.21733 (2)0.02368 (9)
Cl20.14816 (2)0.26513 (4)0.30590 (2)0.02530 (9)
Cl30.25954 (3)0.95922 (5)0.52321 (3)0.03198 (10)
H10N0.1886 (13)1.0337 (17)0.2623 (13)0.049 (6)*
H11N0.0063 (10)0.887 (2)0.2194 (12)0.039 (5)*
H12N0.0483 (13)1.0283 (18)0.2478 (13)0.047 (6)*
H13N0.1429 (12)0.326 (2)0.1616 (10)0.038 (5)*
H14N0.1828 (11)0.408 (2)0.1057 (12)0.039 (5)*
H15N0.0337 (12)0.357 (2)0.0832 (11)0.045 (6)*
H16N0.1202 (11)0.429 (2)0.0372 (12)0.039 (5)*
H17N0.6669 (11)0.561 (2)0.0740 (13)0.044 (6)*
H18N0.6263 (13)0.628 (2)0.1350 (11)0.045 (6)*
H19N0.6042 (11)0.582 (2)0.0693 (12)0.042 (6)*
H1N0.2689 (14)0.552 (2)0.2609 (13)0.048 (6)*
H20N0.5209 (13)0.667 (2)0.1093 (12)0.035 (5)*
H2N0.3116 (12)0.413 (2)0.2562 (12)0.034 (5)*
H2S0.1772 (14)0.501 (2)0.3670 (14)0.063 (7)*
H3N0.4498 (11)0.418 (2)0.2606 (11)0.028 (5)*
H4N0.5001 (12)0.556 (2)0.2727 (12)0.033 (5)*
H4S0.0549 (15)0.234 (2)0.0260 (15)0.065 (7)*
H5N0.2310 (11)0.331 (2)0.4620 (10)0.033 (5)*
H5S0.4337 (15)0.768 (2)0.0474 (15)0.068 (7)*
H6N0.2823 (13)0.341 (2)0.5582 (11)0.052 (6)*
H7N0.2821 (12)0.7027 (17)0.5739 (12)0.036 (5)*
H8N0.3128 (12)0.567 (2)0.6237 (10)0.042 (6)*
H9N0.2319 (10)0.890 (2)0.2464 (12)0.038 (5)*
N10.31308 (10)0.50667 (17)0.26422 (10)0.0286 (3)
N100.62646 (10)0.61272 (18)0.08312 (9)0.0349 (3)
N20.45314 (10)0.50807 (17)0.26805 (10)0.0295 (3)
N30.25464 (10)0.38179 (17)0.50862 (10)0.0341 (3)
N40.28862 (11)0.60913 (18)0.57553 (10)0.0362 (4)
N50.18693 (10)0.93523 (17)0.24771 (11)0.0355 (3)
N60.04351 (10)0.93486 (16)0.23118 (10)0.0320 (3)
N70.14216 (10)0.35255 (17)0.11049 (9)0.0307 (3)
N80.07441 (10)0.37960 (17)0.03649 (9)0.0307 (3)
N90.56308 (10)0.63381 (18)0.06456 (9)0.0317 (3)
S10.38657 (3)0.77282 (4)0.28160 (3)0.02625 (10)
S20.19881 (3)0.62081 (5)0.40844 (3)0.03084 (11)
S30.10697 (3)0.67952 (4)0.19506 (3)0.02933 (10)
S40.00958 (3)0.22533 (6)0.05196 (4)0.04788 (14)
S50.48080 (3)0.76310 (6)0.03389 (3)0.04573 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (8)0.0232 (7)0.0164 (7)0.0000 (6)0.0031 (6)0.0008 (5)
C20.0248 (8)0.0286 (8)0.0211 (8)0.0015 (6)0.0077 (6)0.0016 (6)
C30.0261 (8)0.0229 (7)0.0215 (7)0.0010 (6)0.0045 (6)0.0007 (6)
C40.0254 (8)0.0247 (8)0.0275 (8)0.0002 (6)0.0099 (7)0.0041 (6)
C50.0271 (9)0.0276 (8)0.0276 (8)0.0040 (7)0.0093 (7)0.0006 (6)
Cl10.0267 (2)0.02205 (18)0.02225 (18)0.00058 (14)0.00803 (15)0.00263 (13)
Cl20.0296 (2)0.02340 (18)0.02352 (19)0.00071 (15)0.00952 (16)0.00253 (14)
Cl30.0266 (2)0.0341 (2)0.0364 (2)0.00110 (16)0.01196 (17)0.00136 (17)
N10.0235 (8)0.0219 (7)0.0418 (8)0.0027 (6)0.0126 (6)0.0068 (6)
N100.0344 (9)0.0496 (9)0.0197 (7)0.0044 (7)0.0076 (6)0.0011 (6)
N20.0250 (8)0.0211 (7)0.0433 (9)0.0008 (6)0.0122 (6)0.0021 (6)
N30.0438 (10)0.0277 (8)0.0246 (8)0.0012 (7)0.0027 (7)0.0029 (6)
N40.0482 (10)0.0320 (8)0.0220 (7)0.0004 (7)0.0027 (7)0.0004 (6)
N50.0243 (8)0.0257 (7)0.0560 (10)0.0006 (6)0.0124 (7)0.0089 (7)
N60.0255 (8)0.0237 (7)0.0463 (9)0.0012 (6)0.0113 (7)0.0020 (6)
N70.0317 (8)0.0394 (8)0.0207 (7)0.0071 (7)0.0082 (6)0.0012 (6)
N80.0270 (8)0.0418 (8)0.0218 (7)0.0056 (7)0.0060 (6)0.0018 (6)
N90.0287 (8)0.0426 (9)0.0212 (7)0.0079 (7)0.0047 (6)0.0034 (6)
S10.0223 (2)0.01955 (19)0.0319 (2)0.00003 (15)0.00212 (16)0.00217 (15)
S20.0373 (2)0.0297 (2)0.0220 (2)0.00586 (17)0.00489 (17)0.00139 (16)
S30.0255 (2)0.02236 (19)0.0326 (2)0.00159 (15)0.00071 (17)0.00544 (16)
S40.0410 (3)0.0524 (3)0.0473 (3)0.0191 (2)0.0104 (2)0.0089 (2)
S50.0439 (3)0.0502 (3)0.0446 (3)0.0125 (2)0.0165 (2)0.0067 (2)
Geometric parameters (Å, º) top
C1—N11.322 (2)N4—H8N0.841 (15)
C1—N21.321 (2)N5—H10N0.911 (15)
C2—N41.311 (2)N5—H9N0.847 (14)
C2—N31.308 (2)N6—H11N0.884 (14)
C3—N61.324 (2)N6—H12N0.875 (15)
C3—N51.321 (2)N7—H14N0.851 (14)
C4—N71.308 (2)N7—H13N0.855 (14)
C4—N81.306 (2)N8—H16N0.873 (14)
C5—N101.306 (2)N8—H15N0.851 (15)
C5—N91.303 (2)N9—H19N0.840 (15)
N1—H1N0.81 (2)N9—H20N0.87 (2)
N1—H2N0.84 (2)S1—C11.7127 (15)
N10—H18N0.850 (15)S2—H2S1.25 (2)
N10—H17N0.857 (15)S2—C21.7398 (15)
N2—H4N0.861 (19)S3—C31.7120 (16)
N2—H3N0.811 (19)S4—H4S1.24 (2)
N3—H6N0.862 (15)S4—C41.7414 (16)
N3—H5N0.855 (14)S5—H5S1.29 (2)
N4—H7N0.844 (15)S5—C51.7464 (17)
C2—S2—H2S92.4 (10)C1—N2—H3N119.1 (13)
C5—S5—H5S94.6 (10)C1—N2—H4N119.4 (12)
C4—S4—H4S94.9 (10)H3N—N2—H4N121.4 (18)
N2—C1—N1118.37 (15)C3—N5—H9N119.5 (13)
N2—C1—S1121.06 (12)C3—N5—H10N119.3 (13)
N1—C1—S1120.56 (12)H9N—N5—H10N121.2 (18)
N8—C4—N7121.45 (15)C4—N7—H13N123.0 (13)
N8—C4—S4121.58 (13)C4—N7—H14N117.6 (13)
N7—C4—S4116.97 (12)H13N—N7—H14N118.9 (18)
N9—C5—N10121.48 (16)C1—N1—H2N120.1 (12)
N9—C5—S5120.81 (13)C1—N1—H1N119.4 (15)
N10—C5—S5117.71 (13)H2N—N1—H1N119.9 (19)
N5—C3—N6118.38 (15)C5—N9—H20N120.2 (12)
N5—C3—S3120.21 (12)C5—N9—H19N116.2 (13)
N6—C3—S3121.41 (13)H20N—N9—H19N123.6 (18)
N3—C2—N4121.66 (15)C3—N6—H12N119.5 (14)
N3—C2—S2120.80 (12)C3—N6—H11N119.5 (12)
N4—C2—S2117.53 (13)H12N—N6—H11N120.9 (18)
C2—N3—H5N119.8 (13)C5—N10—H17N117.8 (13)
C2—N3—H6N117.5 (14)C5—N10—H18N121.4 (14)
H5N—N3—H6N123 (2)H17N—N10—H18N120.7 (19)
C2—N4—H8N119.2 (14)C4—N8—H15N121.5 (14)
C2—N4—H7N120.5 (13)C4—N8—H16N115.9 (13)
H8N—N4—H7N119.7 (19)H15N—N8—H16N122.2 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S30.82 (2)2.76 (2)3.5403 (17)161.9 (18)
N1—H2N···Cl10.848 (18)2.474 (18)3.2683 (16)156.2 (18)
N10—H17N···Cl3i0.86 (2)2.45 (2)3.2261 (17)152 (2)
N10—H18N···Cl1ii0.85 (2)2.35 (2)3.2019 (14)175 (2)
N2—H3N···Cl10.815 (18)2.624 (18)3.3656 (16)152.0 (17)
N2—H4N···Cl1ii0.86 (2)2.45 (2)3.3060 (17)174.5 (17)
N3—H5N···Cl20.86 (2)2.51 (2)3.3333 (16)161 (2)
N3—H6N···Cl1iii0.86 (2)2.47 (2)3.2799 (16)157 (2)
N4—H7N···Cl30.84 (2)2.43 (2)3.2422 (17)163 (2)
N4—H8N···Cl1iii0.84 (2)2.57 (2)3.3327 (16)151 (2)
N4—H8N···S1iv0.84 (2)2.83 (2)3.3571 (16)123 (2)
N5—H9N···S10.85 (2)2.62 (2)3.4493 (18)166 (2)
N5—H10N···Cl2v0.91 (2)2.35 (2)3.2262 (16)161 (2)
N6—H11N···Cl2vi0.88 (2)2.47 (2)3.3555 (17)176 (1)
N6—H12N···Cl2v0.88 (2)2.65 (2)3.4328 (15)149 (2)
N7—H13N···Cl20.86 (2)2.37 (2)3.2219 (15)177 (1)
N7—H14N···Cl3vii0.85 (2)2.42 (2)3.2066 (17)154 (2)
N8—H15N···S3viii0.85 (2)2.44 (2)3.2649 (16)164 (2)
N8—H16N···Cl3vii0.87 (2)2.39 (2)3.2036 (17)156 (2)
N9—H19N···Cl3i0.84 (2)2.38 (2)3.1674 (17)157 (2)
N9—H20N···S1vii0.872 (19)2.38 (2)3.2412 (16)167.7 (19)
S2—H2S···Cl21.253 (19)2.315 (19)3.5612 (6)172.9 (14)
S4—H4S···S3viii1.24 (2)2.69 (2)3.8755 (8)159.2 (15)
S5—H5S···S1vii1.29 (2)2.64 (2)3.8691 (7)159.3 (16)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z; (vi) x, y+1/2, z+1/2; (vii) x, y+3/2, z1/2; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula3CH5N2S+·3Cl·2CH4N2S
Mr489.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.3469 (6), 8.9579 (3), 16.1505 (5)
β (°) 109.105 (2)
V3)2234.72 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.45 × 0.32 × 0.29
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25994, 4885, 4190
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.06
No. of reflections4885
No. of parameters300
No. of restraints15
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.45, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S30.82 (2)2.76 (2)3.5403 (17)161.9 (18)
N1—H2N···Cl10.848 (18)2.474 (18)3.2683 (16)156.2 (18)
N10—H17N···Cl3i0.859 (19)2.445 (19)3.2261 (17)151.6 (17)
N10—H18N···Cl1ii0.850 (17)2.354 (17)3.2019 (14)175 (2)
N2—H3N···Cl10.815 (18)2.624 (18)3.3656 (16)152.0 (17)
N2—H4N···Cl1ii0.86 (2)2.45 (2)3.3060 (17)174.5 (17)
N3—H5N···Cl20.856 (16)2.511 (16)3.3333 (16)161.4 (16)
N3—H6N···Cl1iii0.862 (17)2.470 (17)3.2799 (16)156.8 (16)
N4—H7N···Cl30.844 (15)2.427 (16)3.2422 (17)162.6 (17)
N4—H8N···Cl1iii0.838 (16)2.573 (17)3.3327 (16)151.3 (15)
N4—H8N···S1iv0.838 (16)2.829 (16)3.3571 (16)122.7 (15)
N5—H9N···S10.846 (18)2.622 (18)3.4493 (18)166.1 (16)
N5—H10N···Cl2v0.911 (16)2.353 (17)3.2262 (16)160.6 (19)
N6—H11N···Cl2vi0.884 (18)2.473 (18)3.3555 (17)175.9 (14)
N6—H12N···Cl2v0.875 (17)2.654 (18)3.4328 (15)148.9 (19)
N7—H13N···Cl20.855 (16)2.368 (16)3.2219 (15)176.9 (14)
N7—H14N···Cl3vii0.853 (19)2.420 (19)3.2066 (17)153.6 (16)
N8—H15N···S3viii0.851 (18)2.437 (19)3.2649 (16)164.4 (17)
N8—H16N···Cl3vii0.873 (19)2.385 (19)3.2036 (17)156.3 (16)
N9—H19N···Cl3i0.841 (19)2.375 (19)3.1674 (17)157.4 (17)
N9—H20N···S1vii0.872 (19)2.38 (2)3.2412 (16)167.7 (19)
S2—H2S···Cl21.253 (19)2.315 (19)3.5612 (6)172.9 (14)
S4—H4S···S3viii1.24 (2)2.69 (2)3.8755 (8)159.2 (15)
S5—H5S···S1vii1.29 (2)2.64 (2)3.8691 (7)159.3 (16)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z; (vi) x, y+1/2, z+1/2; (vii) x, y+3/2, z1/2; (viii) x, y+1, z.
 

Acknowledgements

The author thanks the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVelsko, S. (1990). Laser Program Annual Report, Lawrence Livermore National Laboratory, Livermore, Canada.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, G., Jiang, M., Shao, Z. & Xu, D. (1987). Chin. J. Lasers, 14, 357–360.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds