organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-[(2-Phenyl-2,3-di­hydro-1H-benz­imidazole-1,3-di­yl)bis­­(methyl­ene)]bis­­(1H-benzotriazole)

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, bUniversidad Nacional de Colombia, Sede Manizales, Colombia, and cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 22 December 2011; accepted 23 December 2011; online 7 January 2012)

The imidazole ring in the title compound, C27H22N8, adopts a slight envelope conformation with the C atom carrying the phenyl ring being the flap atom. The phenyl ring is almost perpendicular to the mean plane of the imidazole ring [dihedral angle = 88.90 (7)°]. The (1H-benzotriazol-1-yl)methyl groups bound to the imidazole ring are positioned on the same side of the imidazole ring. The dihedral angle between these benzotriazolyl rings is 17.71 (5)°. The crystal packing is stabilized by a C—H⋯π inter­action, which connects the mol­ecules into zigzag chains running along the b axis.

Related literature

For a related structure see: Rivera et al. (2011[Rivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o990.]). For the synthesis of the precursor and the title compound, see: Rivera et al. (2000[Rivera, A., León, J. F., Rivera, J., Parra, E. C., Purmova, J., Burgueño-Tapia, E. & Joseph-Nathan, P. (2000). Synth. Commun. 30, 2029-2040.], 2004[Rivera, A., Núñez, M. E., Maldonado, M. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77-80.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H22N8

  • Mr = 458.5

  • Orthorhombic, P 21 21 21

  • a = 9.2721 (2) Å

  • b = 13.6449 (3) Å

  • c = 17.1883 (4) Å

  • V = 2174.61 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 120 K

  • 0.38 × 0.25 × 0.18 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.325, Tmax = 1

  • 27948 measured reflections

  • 2206 independent reflections

  • 2149 reflections with I > 3σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.080

  • S = 1.80

  • 2206 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C15–C20 aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg6i 0.96 2.61 3.5597 (19) 169
Symmetry code: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Considerable work from our laboratory has been concerned with the synthesis of benzotriazol-1-ylmethyl groups attached to imidazolidine-like nitrogen atoms in heterocyclic aminals. The title compound (I) was synthesized via route modified from that reported (Rivera et al., 2000) by reaction of 1,1'-(1H-benzimidazole-1,3(2H)-diyl)bis(methylene)-bis-(1H-benzotriazole) with benzaldehyde. The whole procedure is a two-step method with a good overall yield. The starting compound was prepared according to literature procedure (Rivera et al., 2004). The structure of this precursor, whose structure we reported previously (Rivera et al., 2011), showed that the compound exists in a conformation in which the benzotriazol-1-ylmethyl moieties arranged in anti disposition with respect to benzimidazolidine ring. In the title compound, the presence of a phenyl substituent on the central carbon of the benzimidazolidine ring may influence the pendant substituent to occupy a syn conformation.

Although the molecule potentially exhibits mirror symmetry, in the crystalline state the spatial disposition of two 1H-benzotriazol-1-yl)methyl units are not perfectly identical (Figure 1). However, the measured bond lengths and angles are extremely close and consequently only mean values will be cited in this discussion. The interatomic distances and angles of title compound (I) are comparable with a related structure (Rivera et al., 2011). The imidazole ring is an envelope conformation with the central C8 atom being the flap atom as seen in the puckering parameters Q(2) = 0.1259 (16) Å and ϕ2 = 41.2 (7) ° (Cremer & Pople, 1975). With reference to this plane, the phenyl ring lies to one side of the plane and is almost perpendicular to the mean plane of the heterocyclic ring, with a dihedral angle of 88.898 (66)°. The (1H-benzotriazol-1-yl)methyl groups bound to the central heterocyclic ring are almost syn as seen in the C7—N4···N5—C21 torsion angle of 9.91 (37)°. This is contrary to what is observed in the related structure (Rivera et al., 2011), where the two (benzotriazol-1-yl)methyl groups are located in an anti position with respect to the benzimidazoline moiety. In the title compund the dihedral angle between these benzotriazolyl rings is 17.712 (47)°.

In benzimidazoline ring occurs H12···Cg6 = 2.61 (5) Å, which connect the molecules into a chain along the b axis (Figure 2), Cg6 is the centroid of ring C15—C20.

Related literature top

For a related structure see: Rivera et al. (2011). For the synthesis of the precursor and the title compound, see: Rivera et al. (2000, 2004). For ring conformations, see: Cremer & Pople (1975).

Experimental top

To a solution in methanol (5 ml) of 1,1'-(1H-benzimidazole-1,3(2H)-diyl)bis(methylene)-bis-(1H-benzotriazole) (0.27 mmol) prepared beforehand following previously described procedures (Rivera et al., 2004), was added benzaldehyde (0.27 mmol) dissolved in methanol (1 ml). The reaction mixture was refluxed with stirring for 1 h. The reaction mixture was allowed to stand for 3 h, at which time a white precipitate was formed, it was filtered, washed and dried. Mp = 453–455 K, yield: 19%.

1H NMR (400 MHz, CDCl3) δ (p.p.m.): 5.71 (d, J = 14.4 Hz, 2H, N—CH2—N, benzylic), 5.84 (s, 1H, N—CH—N) 5.84 (d, J = 14.4 Hz, 2H, N—CH2—N, benzylic), 6.85 (m, 2H, H-2 and H-3), 6.93 (m, 2H, H-4 and H-5), 7.03 (m, 2H, H-8 and H-9), 7.27 (m, 2H, H-15 and H-20), 7.37 (m, 5H, H-10, H-13,H-14, H-15, H-18, H-19 and H-20), 7.57 (td, J = 6.8 Hz, J4 = 1.6 Hz, 2H, H-6 and H-7), 7.93 (d, J = 6.4 Hz, 2H, H-12 and H– 17).

Refinement top

All H atoms atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were set to 1.2×Ueq of the parent atom. As the structure contains only light atoms, Friedel pairs were merged and the Flack parameter has not been determined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along b axis.
1,1'-[(2-Phenyl-2,3-dihydro-1H-benzimidazole-1,3- diyl)bis(methylene)]bis(1H-benzotriazole) top
Crystal data top
C27H22N8F(000) = 960
Mr = 458.5Dx = 1.400 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 20891 reflections
a = 9.2721 (2) Åθ = 3.2–67.0°
b = 13.6449 (3) ŵ = 0.70 mm1
c = 17.1883 (4) ÅT = 120 K
V = 2174.61 (8) Å3Prism, colourless
Z = 40.38 × 0.25 × 0.18 mm
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
2206 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2149 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 4.1°
Rotation method data acquisition using ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1616
Tmin = 0.325, Tmax = 1l = 1917
27948 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.080(Δ/σ)max = 0.005
S = 1.80Δρmax = 0.12 e Å3
2206 reflectionsΔρmin = 0.12 e Å3
317 parametersExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 2500 (500)
88 constraints
Crystal data top
C27H22N8V = 2174.61 (8) Å3
Mr = 458.5Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.2721 (2) ŵ = 0.70 mm1
b = 13.6449 (3) ÅT = 120 K
c = 17.1883 (4) Å0.38 × 0.25 × 0.18 mm
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
2206 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2149 reflections with I > 3σ(I)
Tmin = 0.325, Tmax = 1Rint = 0.030
27948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.80Δρmax = 0.12 e Å3
2206 reflectionsΔρmin = 0.12 e Å3
317 parameters
Special details top

Experimental. CrysAlisPro (Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.07910 (16)0.13039 (11)0.82518 (8)0.0261 (4)
N20.05744 (16)0.14326 (11)0.83819 (8)0.0247 (4)
N30.13057 (15)0.13457 (9)0.76964 (8)0.0195 (4)
N40.37643 (15)0.06878 (9)0.78252 (8)0.0189 (4)
N50.40183 (15)0.08309 (9)0.83954 (8)0.0191 (4)
N60.20270 (16)0.15999 (10)0.90914 (8)0.0206 (4)
N70.16374 (17)0.16645 (11)0.98552 (9)0.0267 (5)
N80.02387 (18)0.16322 (11)0.99042 (9)0.0293 (5)
C10.03639 (18)0.11614 (10)0.71046 (10)0.0190 (4)
C20.0979 (2)0.11366 (11)0.74674 (10)0.0211 (5)
C30.2245 (2)0.09657 (11)0.70390 (10)0.0234 (5)
C40.2101 (2)0.08297 (12)0.62504 (10)0.0253 (5)
C50.07273 (19)0.08592 (12)0.58905 (11)0.0251 (5)
C60.0524 (2)0.10235 (12)0.62995 (10)0.0227 (5)
C70.28645 (18)0.15303 (11)0.76888 (9)0.0199 (4)
C80.35676 (18)0.01825 (11)0.85796 (9)0.0179 (4)
C90.39816 (17)0.00203 (11)0.72380 (10)0.0195 (4)
C100.41143 (17)0.09406 (11)0.75863 (10)0.0192 (4)
C110.43808 (18)0.17649 (12)0.71390 (10)0.0246 (5)
C120.45606 (18)0.16400 (13)0.63336 (11)0.0282 (5)
C130.44790 (19)0.07213 (14)0.59973 (11)0.0274 (5)
C140.41670 (17)0.01080 (13)0.64492 (10)0.0228 (5)
C150.44554 (18)0.06662 (11)0.92129 (9)0.0185 (4)
C160.59542 (19)0.07058 (11)0.91582 (10)0.0211 (5)
C170.6749 (2)0.11935 (13)0.97213 (10)0.0248 (5)
C180.6050 (2)0.16512 (12)1.03365 (10)0.0259 (5)
C190.4558 (2)0.16208 (13)1.03928 (10)0.0272 (5)
C200.3761 (2)0.11246 (12)0.98311 (10)0.0238 (5)
C210.35731 (18)0.16107 (11)0.89023 (10)0.0217 (5)
C220.08283 (18)0.15079 (11)0.86383 (10)0.0196 (4)
C230.0315 (2)0.15290 (11)0.91632 (10)0.0234 (5)
C240.1745 (2)0.14330 (13)0.89103 (11)0.0275 (5)
C250.19652 (19)0.13049 (12)0.81287 (11)0.0269 (5)
C260.0803 (2)0.12856 (11)0.75995 (10)0.0241 (5)
C270.06078 (18)0.13921 (11)0.78313 (10)0.0207 (4)
H30.3172630.0944840.7286940.0281*
H40.2943580.0713010.5939080.0303*
H50.0667430.0760540.5338490.0301*
H60.1449660.1042740.6050050.0273*
H7a0.3092390.2031890.806070.0239*
H7b0.3129860.1830380.7204370.0239*
H80.2604220.0205740.8783410.0215*
H110.444080.2402790.7372350.0295*
H120.4743030.2201370.6011730.0339*
H130.4637730.0650140.5448280.0328*
H140.4085250.0744980.6216190.0273*
H160.6436680.0394980.8730040.0254*
H170.7782120.1214750.9685960.0297*
H180.6601420.1990461.0724810.0311*
H190.4077060.194071.0817370.0327*
H200.2728520.1098490.987030.0285*
H21a0.3821040.2229430.8672540.026*
H21b0.4125790.1586130.9374150.026*
H240.2536940.1456050.9269640.0329*
H250.2930960.1226680.793720.0323*
H260.1004480.1194520.705650.0289*
H270.1392830.1387880.7467180.0248*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (8)0.0316 (7)0.0223 (7)0.0027 (6)0.0026 (6)0.0007 (6)
N20.0248 (8)0.0270 (7)0.0224 (7)0.0032 (6)0.0002 (6)0.0027 (6)
N30.0199 (7)0.0200 (6)0.0186 (7)0.0020 (6)0.0001 (5)0.0009 (5)
N40.0206 (7)0.0187 (6)0.0173 (7)0.0004 (5)0.0010 (6)0.0001 (5)
N50.0205 (7)0.0163 (6)0.0203 (7)0.0005 (5)0.0014 (5)0.0007 (5)
N60.0235 (7)0.0204 (6)0.0178 (7)0.0026 (5)0.0010 (6)0.0020 (5)
N70.0334 (9)0.0276 (7)0.0192 (7)0.0056 (6)0.0003 (6)0.0024 (6)
N80.0333 (9)0.0311 (7)0.0236 (8)0.0049 (6)0.0041 (6)0.0020 (6)
C10.0212 (8)0.0136 (6)0.0224 (8)0.0009 (6)0.0026 (7)0.0005 (6)
C20.0228 (9)0.0170 (7)0.0234 (8)0.0018 (6)0.0003 (7)0.0004 (6)
C30.0198 (8)0.0211 (7)0.0295 (9)0.0005 (6)0.0009 (7)0.0011 (6)
C40.0252 (9)0.0223 (8)0.0283 (9)0.0014 (7)0.0043 (7)0.0013 (7)
C50.0262 (10)0.0260 (8)0.0231 (9)0.0004 (7)0.0014 (7)0.0018 (7)
C60.0237 (9)0.0219 (7)0.0227 (9)0.0000 (6)0.0014 (7)0.0000 (6)
C70.0194 (8)0.0164 (7)0.0238 (8)0.0003 (6)0.0029 (6)0.0006 (6)
C80.0173 (8)0.0181 (7)0.0184 (8)0.0003 (6)0.0009 (6)0.0001 (6)
C90.0138 (7)0.0228 (7)0.0219 (8)0.0008 (6)0.0004 (6)0.0034 (6)
C100.0139 (8)0.0224 (7)0.0214 (8)0.0009 (6)0.0010 (6)0.0018 (6)
C110.0205 (8)0.0224 (7)0.0308 (9)0.0013 (6)0.0019 (7)0.0059 (7)
C120.0205 (9)0.0334 (9)0.0309 (10)0.0033 (7)0.0016 (7)0.0129 (7)
C130.0192 (9)0.0414 (9)0.0215 (9)0.0009 (7)0.0000 (7)0.0062 (7)
C140.0175 (8)0.0306 (8)0.0202 (8)0.0016 (7)0.0008 (6)0.0007 (7)
C150.0237 (8)0.0162 (7)0.0157 (8)0.0006 (6)0.0007 (6)0.0013 (6)
C160.0240 (9)0.0207 (7)0.0188 (8)0.0019 (6)0.0023 (7)0.0000 (6)
C170.0234 (9)0.0271 (8)0.0238 (9)0.0027 (6)0.0037 (7)0.0041 (7)
C180.0354 (10)0.0241 (7)0.0183 (8)0.0046 (7)0.0045 (7)0.0007 (6)
C190.0358 (10)0.0257 (8)0.0202 (8)0.0025 (7)0.0033 (7)0.0032 (7)
C200.0232 (9)0.0250 (8)0.0231 (9)0.0011 (7)0.0033 (7)0.0005 (6)
C210.0211 (8)0.0197 (7)0.0241 (8)0.0000 (6)0.0030 (7)0.0037 (6)
C220.0208 (8)0.0149 (6)0.0230 (8)0.0020 (6)0.0009 (7)0.0014 (6)
C230.0285 (9)0.0180 (7)0.0236 (8)0.0034 (6)0.0033 (7)0.0028 (6)
C240.0233 (9)0.0228 (8)0.0362 (10)0.0025 (7)0.0078 (7)0.0054 (7)
C250.0213 (9)0.0203 (7)0.0392 (11)0.0000 (7)0.0026 (7)0.0057 (7)
C260.0263 (9)0.0187 (7)0.0273 (9)0.0013 (7)0.0039 (7)0.0009 (6)
C270.0213 (8)0.0195 (7)0.0212 (8)0.0018 (6)0.0003 (7)0.0002 (6)
Geometric parameters (Å, º) top
N1—N21.298 (2)C10—C111.385 (2)
N1—C21.379 (2)C11—C121.405 (3)
N2—N31.365 (2)C11—H110.96
N3—C11.364 (2)C12—C131.382 (3)
N3—C71.467 (2)C12—H120.96
N4—C71.440 (2)C13—C141.403 (3)
N4—C81.480 (2)C13—H130.96
N4—C91.412 (2)C14—H140.96
N5—C81.479 (2)C15—C161.394 (2)
N5—C101.402 (2)C15—C201.391 (2)
N5—C211.436 (2)C16—C171.387 (2)
N6—N71.364 (2)C16—H160.96
N6—C211.470 (2)C17—C181.389 (2)
N6—C221.363 (2)C17—H170.96
N7—N81.300 (2)C18—C191.387 (3)
N8—C231.380 (2)C18—H180.96
C1—C21.393 (2)C19—C201.392 (2)
C1—C61.404 (2)C19—H190.96
C2—C31.405 (3)C20—H200.96
C3—C41.375 (3)C21—H21a0.96
C3—H30.96C21—H21b0.96
C4—C51.417 (3)C22—C231.392 (2)
C4—H40.96C22—C271.411 (2)
C5—C61.375 (3)C23—C241.402 (3)
C5—H50.96C24—C251.370 (3)
C6—H60.96C24—H240.96
C7—H7a0.96C25—C261.411 (3)
C7—H7b0.96C25—H250.96
C8—C151.516 (2)C26—C271.375 (2)
C8—H80.96C26—H260.96
C9—C101.397 (2)C27—H270.96
C9—C141.378 (2)
N2—N1—C2108.32 (14)C10—C11—H11120.9899
N1—N2—N3108.92 (13)C12—C11—H11120.9894
N2—N3—C1109.99 (14)C11—C12—C13121.04 (17)
N2—N3—C7118.83 (13)C11—C12—H12119.4794
C1—N3—C7130.98 (14)C13—C12—H12119.4802
C7—N4—C8116.31 (13)C12—C13—C14120.74 (17)
C7—N4—C9120.85 (13)C12—C13—H13119.6288
C8—N4—C9108.98 (12)C14—C13—H13119.6289
C8—N5—C10109.28 (12)C9—C14—C13117.92 (16)
C8—N5—C21118.80 (13)C9—C14—H14121.0407
C10—N5—C21122.76 (13)C13—C14—H14121.0413
N7—N6—C21118.06 (14)C8—C15—C16120.64 (14)
N7—N6—C22109.87 (14)C8—C15—C20119.52 (15)
C21—N6—C22132.05 (14)C16—C15—C20119.73 (15)
N6—N7—N8108.92 (14)C15—C16—C17120.10 (15)
N7—N8—C23108.32 (15)C15—C16—H16119.9515
N3—C1—C2104.06 (14)C17—C16—H16119.9514
N3—C1—C6133.79 (16)C16—C17—C18119.92 (17)
C2—C1—C6122.15 (16)C16—C17—H17120.0389
N1—C2—C1108.71 (15)C18—C17—H17120.0394
N1—C2—C3130.20 (16)C17—C18—C19120.36 (16)
C1—C2—C3121.09 (15)C17—C18—H18119.8197
C2—C3—C4117.25 (16)C19—C18—H18119.819
C2—C3—H3121.3774C18—C19—C20119.71 (16)
C4—C3—H3121.3773C18—C19—H19120.1465
C3—C4—C5120.93 (17)C20—C19—H19120.1462
C3—C4—H4119.5339C15—C20—C19120.18 (17)
C5—C4—H4119.5344C15—C20—H20119.9089
C4—C5—C6122.70 (17)C19—C20—H20119.9072
C4—C5—H5118.6524N5—C21—N6114.03 (13)
C6—C5—H5118.6526N5—C21—H21a109.4706
C1—C6—C5115.89 (16)N5—C21—H21b109.4714
C1—C6—H6122.0553N6—C21—H21a109.4709
C5—C6—H6122.0541N6—C21—H21b109.4714
N3—C7—N4115.62 (12)H21a—C21—H21b104.4982
N3—C7—H7a109.4709N6—C22—C23104.40 (14)
N3—C7—H7b109.471N6—C22—C27133.65 (16)
N4—C7—H7a109.4713C23—C22—C27121.94 (16)
N4—C7—H7b109.4716N8—C23—C22108.49 (16)
H7a—C7—H7b102.5346N8—C23—C24130.34 (17)
N4—C8—N5102.31 (12)C22—C23—C24121.16 (16)
N4—C8—C15111.06 (12)C23—C24—C25117.19 (17)
N4—C8—H8114.7756C23—C24—H24121.4053
N5—C8—C15114.04 (13)C25—C24—H24121.4053
N5—C8—H8111.8387C24—C25—C26121.39 (17)
C15—C8—H8103.2226C24—C25—H25119.3049
N4—C9—C10108.75 (14)C26—C25—H25119.3045
N4—C9—C14129.38 (15)C25—C26—C27122.55 (16)
C10—C9—C14121.67 (15)C25—C26—H26118.7268
N5—C10—C9108.88 (13)C27—C26—H26118.7256
N5—C10—C11130.47 (15)C22—C27—C26115.76 (15)
C9—C10—C11120.54 (15)C22—C27—H27122.1215
C10—C11—C12118.02 (16)C26—C27—H27122.1225
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C15–C20 aromatic ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg6i0.962.613.5597 (19)169
Symmetry code: (i) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC27H22N8
Mr458.5
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)9.2721 (2), 13.6449 (3), 17.1883 (4)
V3)2174.61 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.38 × 0.25 × 0.18
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.325, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
27948, 2206, 2149
Rint0.030
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.080, 1.80
No. of reflections2206
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C15–C20 aromatic ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg6i0.962.613.5597 (19)169
Symmetry code: (i) x+3/2, y+1/2, z+1.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., León, J. F., Rivera, J., Parra, E. C., Purmova, J., Burgueño-Tapia, E. & Joseph-Nathan, P. (2000). Synth. Commun. 30, 2029–2040.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Núñez, M. E., Maldonado, M. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77–80.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds