organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o330-o331

Methyl (2Z)-2-{[N-(2-formyl­phen­yl)-4-methyl­benzene­sulfonamido]­meth­yl}-3-(naphthalen-1-yl)prop-2-enoate

aDepartment of Physics, Ranipettai Engineering College, Thenkadapathangal, Walaja 632 513, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, and dDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India.
*Correspondence e-mail: smurugavel27@gmail.com

(Received 2 January 2012; accepted 6 January 2012; online 11 January 2012)

In the title compound, C29H25NO5S, the sulfonyl-bound benzene ring forms dihedral angles of 42.1 (1) and 48.5 (1)°, respectively, with the formyl-substituted benzene ring and the naphthalene residue. In the crystal, pairs of C—H⋯O inter­actions lead to the formation of R22(10) inversion dimers, which are linked by further C—H⋯O inter­actions into supra­molecular tapes running along [100]. The crystal packing is further stabilized by C—H⋯π inter­actions.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). In Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For resonance effects of acrylate, see: Merlino (1971[Merlino, S. (1971). Acta Cryst. B27, 2491-2492.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544-1546.]). For related structures, see: Madhanraj et al. (2011[Madhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, o3511.]); Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.]).

[Scheme 1]

Experimental

Crystal data
  • C29H25NO5S

  • Mr = 499.56

  • Triclinic, [P \overline 1]

  • a = 8.0162 (3) Å

  • b = 12.0887 (5) Å

  • c = 13.8703 (6) Å

  • α = 107.788 (2)°

  • β = 90.068 (1)°

  • γ = 93.446 (2)°

  • V = 1277.27 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.974

  • 22485 measured reflections

  • 4932 independent reflections

  • 3520 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.01

  • 4932 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C22/C23/C26–C29 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25A⋯O4i 0.96 2.50 3.462 (3) 177
C10—H10⋯O2ii 0.93 2.44 3.305 (2) 155
C17—H17⋯Cgiii 0.93 2.78 3.528 (2) 138
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z; (iii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988, Mandell & Sande, 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of the title compound, with the atom numbering scheme. The significant difference in length of the C24—O5 = 1.332 (2) Å and C25—O5 = 1.443 (2) Å bonds is attributed to a partial contribution from the O-–C = O+–C resonance structure of the O4C24—O5—C25 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986). The sum of bond angles around N1 (350.6°) indicates that N1 is in sp2 hybridization. The sulfonyl–bound benzene (C8–C13) ring forms dihedral angles of 42.1 (1)° and 48.5 (1)° respectively, with the formyl phenyl (C1–C6) and naphthalene (C18–C23/C26–C29) rings. The dihedral angle between formyl phenyl and naphthalene rings is 8.9 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Madhanraj et al., 2011; Aziz-ur-Rehman et al., 2010).

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The molecules at x, y, z and 1-x, 1-y, 2-z are linked by C25—H25A···O4 hydrogen bonds into cyclic centrosymmetric R22(10) dimers (Fig. 2). These dimers are linked by C10—H10···O2 hydrogen bonds forming supramolecular tapes running along the [100] directions (Fig. 3). The crystal packing is further stabilized by C-H···π interactions between H17 atom and the ring (C22/C23/C26–C29) at -x, -y, 2-z combine two molecules into a centrosymmetric inverted dimer (Table. 1 and Fig. 4).

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For related structures, see: Madhanraj et al. (2011); Aziz-ur-Rehman et al. (2010).

Experimental top

A solution of N-(2-formylphenyl)-4-methylbenzene-1-sulfonamide (1 mmol, 0.275 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, methyl(2E-2-(bromomethyl)-3-(naphthalen-1-yl) prop-2-enoate (1.2 mmol, 0.366 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitile was evaporated. ETOAc (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100-200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.450 g, 90% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating R22(10) centrosymmetric dimer. [Symmetry code: (i) 1-x, 1-y, 2-z].
[Figure 3] Fig. 3. Supramolecular tape formation in (I) whereby centrosymmetrc R22(10) dimeric aggregates sustained by C—H···O (red dashed lines) contacts are linked via C—H···O contacts (blue dashed lines) along [1 0 0].
[Figure 4] Fig. 4. Part of the crystal structure of the title compound showing the formation of centrosymmetric dimer by means of symmetry–related C-H···π(arene) hydrogen bonds. [Symmetry code: (iii) -x, -y, 2-z].
Methyl (2Z)-2-{[N-(2-formylphenyl)- 4-methylbenzenesulfonamido]methyl}-3-(naphthalen-1-yl)prop-2-enoate top
Crystal data top
C29H25NO5SZ = 2
Mr = 499.56F(000) = 524
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0162 (3) ÅCell parameters from 4958 reflections
b = 12.0887 (5) Åθ = 1.5–25.9°
c = 13.8703 (6) ŵ = 0.17 mm1
α = 107.788 (2)°T = 293 K
β = 90.068 (1)°Block, colourless
γ = 93.446 (2)°0.23 × 0.21 × 0.16 mm
V = 1277.27 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4932 independent reflections
Radiation source: fine-focus sealed tube3520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 25.9°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.963, Tmax = 0.974l = 1716
22485 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1916P]
where P = (Fo2 + 2Fc2)/3
4932 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C29H25NO5Sγ = 93.446 (2)°
Mr = 499.56V = 1277.27 (9) Å3
Triclinic, P1Z = 2
a = 8.0162 (3) ÅMo Kα radiation
b = 12.0887 (5) ŵ = 0.17 mm1
c = 13.8703 (6) ÅT = 293 K
α = 107.788 (2)°0.23 × 0.21 × 0.16 mm
β = 90.068 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4932 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3520 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.974Rint = 0.031
22485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
4932 reflectionsΔρmin = 0.23 e Å3
327 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16584 (5)0.44112 (4)0.73002 (4)0.05990 (17)
N10.15470 (16)0.34007 (12)0.78747 (11)0.0497 (3)
O50.34851 (16)0.31525 (12)1.04708 (11)0.0702 (4)
C80.0019 (2)0.41133 (15)0.64232 (14)0.0507 (4)
C10.1799 (2)0.22349 (15)0.72522 (12)0.0487 (4)
O20.31605 (15)0.42505 (14)0.67383 (13)0.0834 (5)
O30.14348 (18)0.54886 (11)0.80521 (12)0.0800 (4)
O40.27092 (17)0.47877 (12)1.02354 (12)0.0765 (4)
C230.0828 (2)0.01039 (16)0.87084 (13)0.0548 (4)
C180.0968 (2)0.13048 (16)0.92080 (13)0.0553 (4)
C160.1067 (2)0.30378 (15)0.94720 (12)0.0507 (4)
C20.0452 (2)0.14657 (17)0.68456 (14)0.0610 (5)
H20.06320.16980.69790.073*
C170.0536 (2)0.20561 (16)0.96421 (13)0.0553 (4)
H170.11870.18131.00860.066*
C90.1560 (2)0.44809 (17)0.67467 (15)0.0602 (5)
H90.17100.48990.74220.072*
C150.0337 (2)0.35257 (15)0.87105 (14)0.0551 (4)
H15A0.07190.31080.84470.066*
H15B0.01380.43400.90230.066*
C60.3421 (2)0.18822 (17)0.70641 (15)0.0617 (5)
C240.2488 (2)0.37625 (16)1.00878 (13)0.0544 (4)
C110.2700 (3)0.36137 (19)0.50739 (17)0.0692 (5)
C260.0718 (3)0.04169 (18)0.85611 (15)0.0659 (5)
H260.16980.00400.87950.079*
C220.2299 (3)0.06165 (18)0.83382 (15)0.0681 (5)
C210.3850 (3)0.0120 (2)0.8509 (2)0.0887 (7)
H210.48200.05870.82740.106*
O10.63132 (19)0.24067 (17)0.72916 (18)0.1204 (7)
C130.0203 (3)0.3499 (2)0.54323 (16)0.0786 (6)
H130.12500.32510.52090.094*
C70.4908 (2)0.2635 (2)0.7536 (2)0.0795 (6)
H70.47480.33210.80500.095*
C100.2882 (2)0.42301 (19)0.60714 (16)0.0687 (5)
H100.39260.44840.62960.082*
C190.2510 (3)0.1742 (2)0.93437 (17)0.0738 (6)
H190.26000.25320.96650.089*
C30.0714 (3)0.0355 (2)0.62431 (17)0.0826 (7)
H30.01930.01680.59790.099*
C290.2140 (4)0.1803 (2)0.78207 (17)0.0890 (8)
H290.30910.22760.75510.107*
C50.3645 (3)0.0768 (2)0.6432 (2)0.0884 (7)
H50.47220.05320.62810.106*
C140.4162 (3)0.3322 (3)0.4336 (2)0.1124 (10)
H14A0.49090.39420.45160.169*
H14B0.47440.26130.43570.169*
H14C0.37650.32270.36640.169*
C270.0799 (3)0.1572 (2)0.80839 (17)0.0830 (7)
H270.18280.19030.80080.100*
C250.4827 (2)0.3807 (2)1.11357 (17)0.0789 (6)
H25A0.55340.42101.07770.118*
H25B0.54690.32861.13620.118*
H25C0.43690.43611.17100.118*
C200.3964 (3)0.1018 (2)0.9005 (2)0.0898 (7)
H200.50080.13240.91240.108*
C280.0645 (4)0.2266 (2)0.77079 (19)0.0961 (8)
H280.05760.30560.73760.115*
C120.1141 (3)0.3253 (2)0.47704 (17)0.0897 (7)
H120.09910.28300.40970.108*
C40.2318 (4)0.0018 (2)0.60314 (19)0.0966 (8)
H40.24910.07280.56120.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0404 (2)0.0595 (3)0.0869 (4)0.00416 (19)0.0106 (2)0.0344 (3)
N10.0424 (7)0.0498 (8)0.0576 (9)0.0038 (6)0.0025 (6)0.0174 (7)
O50.0600 (8)0.0685 (8)0.0787 (9)0.0140 (6)0.0221 (7)0.0211 (7)
C80.0427 (9)0.0513 (10)0.0631 (11)0.0025 (7)0.0010 (8)0.0252 (9)
C10.0480 (9)0.0540 (10)0.0472 (9)0.0049 (8)0.0019 (7)0.0196 (8)
O20.0380 (7)0.1093 (11)0.1291 (13)0.0009 (7)0.0055 (7)0.0759 (10)
O30.0795 (9)0.0463 (7)0.1094 (12)0.0062 (6)0.0360 (8)0.0186 (8)
O40.0716 (9)0.0545 (8)0.0906 (10)0.0055 (7)0.0083 (8)0.0049 (7)
C230.0625 (11)0.0603 (11)0.0440 (9)0.0096 (9)0.0043 (8)0.0222 (9)
C180.0530 (10)0.0621 (11)0.0513 (10)0.0062 (8)0.0016 (8)0.0202 (9)
C160.0454 (9)0.0539 (10)0.0464 (9)0.0010 (8)0.0030 (7)0.0061 (8)
C20.0609 (11)0.0650 (12)0.0562 (11)0.0023 (9)0.0071 (9)0.0183 (10)
C170.0529 (10)0.0618 (11)0.0470 (10)0.0031 (8)0.0031 (8)0.0119 (9)
C90.0449 (10)0.0726 (12)0.0624 (11)0.0091 (9)0.0000 (8)0.0186 (10)
C150.0441 (9)0.0538 (10)0.0635 (11)0.0063 (8)0.0013 (8)0.0116 (9)
C60.0578 (11)0.0662 (12)0.0699 (12)0.0160 (9)0.0065 (9)0.0315 (10)
C240.0489 (10)0.0552 (11)0.0511 (10)0.0014 (8)0.0051 (8)0.0053 (9)
C110.0646 (13)0.0755 (13)0.0728 (14)0.0040 (10)0.0153 (10)0.0321 (11)
C260.0715 (13)0.0700 (13)0.0585 (11)0.0008 (10)0.0024 (10)0.0237 (10)
C220.0767 (14)0.0709 (13)0.0592 (12)0.0224 (11)0.0120 (10)0.0288 (10)
C210.0653 (15)0.1012 (19)0.1063 (19)0.0308 (13)0.0220 (13)0.0485 (16)
O10.0474 (9)0.1394 (16)0.206 (2)0.0216 (9)0.0138 (11)0.0966 (15)
C130.0608 (13)0.1092 (18)0.0691 (14)0.0235 (12)0.0120 (11)0.0287 (13)
C70.0494 (12)0.0868 (15)0.1220 (19)0.0099 (10)0.0032 (12)0.0603 (14)
C100.0453 (10)0.0889 (15)0.0774 (14)0.0068 (9)0.0011 (10)0.0330 (12)
C190.0590 (12)0.0762 (14)0.0869 (15)0.0012 (10)0.0072 (11)0.0265 (12)
C30.1072 (19)0.0684 (14)0.0654 (13)0.0105 (13)0.0183 (13)0.0134 (11)
C290.120 (2)0.0722 (16)0.0704 (15)0.0366 (15)0.0162 (14)0.0236 (13)
C50.0900 (18)0.0843 (17)0.0969 (18)0.0357 (14)0.0201 (14)0.0312 (14)
C140.106 (2)0.128 (2)0.107 (2)0.0087 (17)0.0507 (17)0.0438 (18)
C270.1054 (19)0.0709 (15)0.0753 (15)0.0135 (13)0.0159 (13)0.0248 (12)
C250.0586 (12)0.0940 (16)0.0771 (14)0.0224 (11)0.0221 (10)0.0208 (12)
C200.0501 (12)0.1022 (19)0.126 (2)0.0058 (12)0.0021 (13)0.0500 (17)
C280.145 (3)0.0615 (14)0.0779 (16)0.0086 (17)0.0134 (17)0.0187 (12)
C120.0936 (18)0.115 (2)0.0557 (13)0.0193 (14)0.0014 (12)0.0162 (13)
C40.133 (2)0.0681 (15)0.0801 (17)0.0262 (16)0.0096 (16)0.0062 (13)
Geometric parameters (Å, º) top
S1—O31.4194 (15)C11—C141.508 (3)
S1—O21.4258 (14)C26—C271.356 (3)
S1—N11.6483 (14)C26—H260.9300
S1—C81.7572 (18)C22—C211.402 (3)
N1—C11.436 (2)C22—C291.408 (3)
N1—C151.490 (2)C21—C201.345 (3)
O5—C241.332 (2)C21—H210.9300
O5—C251.443 (2)O1—C71.200 (2)
C8—C131.366 (3)C13—C121.373 (3)
C8—C91.367 (2)C13—H130.9300
C1—C21.381 (2)C7—H70.9300
C1—C61.393 (2)C10—H100.9300
O4—C241.195 (2)C19—C201.404 (3)
C23—C261.411 (3)C19—H190.9300
C23—C181.416 (2)C3—C41.377 (3)
C23—C221.419 (3)C3—H30.9300
C18—C191.364 (3)C29—C281.342 (4)
C18—C171.474 (2)C29—H290.9300
C16—C171.325 (2)C5—C41.356 (4)
C16—C241.488 (2)C5—H50.9300
C16—C151.492 (2)C14—H14A0.9600
C2—C31.376 (3)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C17—H170.9300C27—C281.389 (3)
C9—C101.371 (3)C27—H270.9300
C9—H90.9300C25—H25A0.9600
C15—H15A0.9700C25—H25B0.9600
C15—H15B0.9700C25—H25C0.9600
C6—C51.387 (3)C20—H200.9300
C6—C71.477 (3)C28—H280.9300
C11—C101.369 (3)C12—H120.9300
C11—C121.372 (3)C4—H40.9300
O3—S1—O2119.86 (10)C21—C22—C23118.7 (2)
O3—S1—N1106.84 (9)C29—C22—C23118.6 (2)
O2—S1—N1106.02 (8)C20—C21—C22121.4 (2)
O3—S1—C8108.59 (8)C20—C21—H21119.3
O2—S1—C8107.37 (9)C22—C21—H21119.3
N1—S1—C8107.59 (8)C8—C13—C12119.1 (2)
C1—N1—C15116.53 (13)C8—C13—H13120.5
C1—N1—S1116.14 (11)C12—C13—H13120.5
C15—N1—S1117.98 (11)O1—C7—C6123.5 (2)
C24—O5—C25116.36 (15)O1—C7—H7118.3
C13—C8—C9120.22 (18)C6—C7—H7118.3
C13—C8—S1120.42 (14)C11—C10—C9121.44 (19)
C9—C8—S1119.35 (15)C11—C10—H10119.3
C2—C1—C6120.04 (17)C9—C10—H10119.3
C2—C1—N1120.62 (15)C18—C19—C20121.0 (2)
C6—C1—N1119.33 (15)C18—C19—H19119.5
C26—C23—C18122.86 (17)C20—C19—H19119.5
C26—C23—C22118.01 (19)C2—C3—C4120.0 (2)
C18—C23—C22119.13 (18)C2—C3—H3120.0
C19—C18—C23119.57 (17)C4—C3—H3120.0
C19—C18—C17120.37 (18)C28—C29—C22121.4 (2)
C23—C18—C17119.91 (16)C28—C29—H29119.3
C17—C16—C24119.54 (17)C22—C29—H29119.3
C17—C16—C15125.68 (16)C4—C5—C6121.0 (2)
C24—C16—C15114.77 (16)C4—C5—H5119.5
C3—C2—C1119.9 (2)C6—C5—H5119.5
C3—C2—H2120.0C11—C14—H14A109.5
C1—C2—H2120.0C11—C14—H14B109.5
C16—C17—C18127.39 (17)H14A—C14—H14B109.5
C16—C17—H17116.3C11—C14—H14C109.5
C18—C17—H17116.3H14A—C14—H14C109.5
C8—C9—C10119.69 (19)H14B—C14—H14C109.5
C8—C9—H9120.2C26—C27—C28120.4 (2)
C10—C9—H9120.2C26—C27—H27119.8
N1—C15—C16108.06 (13)C28—C27—H27119.8
N1—C15—H15A110.1O5—C25—H25A109.5
C16—C15—H15A110.1O5—C25—H25B109.5
N1—C15—H15B110.1H25A—C25—H25B109.5
C16—C15—H15B110.1O5—C25—H25C109.5
H15A—C15—H15B108.4H25A—C25—H25C109.5
C5—C6—C1118.6 (2)H25B—C25—H25C109.5
C5—C6—C7118.7 (2)C21—C20—C19120.1 (2)
C1—C6—C7122.60 (18)C21—C20—H20120.0
O4—C24—O5123.14 (17)C19—C20—H20120.0
O4—C24—C16123.83 (18)C29—C28—C27120.4 (2)
O5—C24—C16113.03 (16)C29—C28—H28119.8
C10—C11—C12117.65 (19)C27—C28—H28119.8
C10—C11—C14121.4 (2)C11—C12—C13121.9 (2)
C12—C11—C14121.0 (2)C11—C12—H12119.0
C27—C26—C23121.1 (2)C13—C12—H12119.0
C27—C26—H26119.4C5—C4—C3120.3 (2)
C23—C26—H26119.4C5—C4—H4119.9
C21—C22—C29122.7 (2)C3—C4—H4119.9
O3—S1—N1—C1177.99 (11)C25—O5—C24—C16175.82 (15)
O2—S1—N1—C149.07 (14)C17—C16—C24—O4154.66 (19)
C8—S1—N1—C165.57 (13)C15—C16—C24—O424.1 (2)
O3—S1—N1—C1536.52 (13)C17—C16—C24—O524.6 (2)
O2—S1—N1—C15165.44 (12)C15—C16—C24—O5156.62 (15)
C8—S1—N1—C1579.92 (13)C18—C23—C26—C27179.60 (18)
O3—S1—C8—C13149.02 (17)C22—C23—C26—C270.3 (3)
O2—S1—C8—C1318.05 (19)C26—C23—C22—C21177.87 (18)
N1—S1—C8—C1395.69 (17)C18—C23—C22—C212.0 (3)
O3—S1—C8—C932.37 (17)C26—C23—C22—C291.7 (3)
O2—S1—C8—C9163.34 (14)C18—C23—C22—C29178.44 (17)
N1—S1—C8—C982.92 (15)C29—C22—C21—C20179.9 (2)
C15—N1—C1—C249.3 (2)C23—C22—C21—C200.5 (3)
S1—N1—C1—C296.70 (17)C9—C8—C13—C120.3 (3)
C15—N1—C1—C6130.40 (16)S1—C8—C13—C12178.28 (18)
S1—N1—C1—C683.60 (17)C5—C6—C7—O111.4 (3)
C26—C23—C18—C19178.47 (18)C1—C6—C7—O1170.5 (2)
C22—C23—C18—C191.4 (3)C12—C11—C10—C90.0 (3)
C26—C23—C18—C172.9 (3)C14—C11—C10—C9179.0 (2)
C22—C23—C18—C17177.00 (16)C8—C9—C10—C110.2 (3)
C6—C1—C2—C30.9 (3)C23—C18—C19—C200.7 (3)
N1—C1—C2—C3179.41 (17)C17—C18—C19—C20174.9 (2)
C24—C16—C17—C18171.62 (16)C1—C2—C3—C41.1 (3)
C15—C16—C17—C187.0 (3)C21—C22—C29—C28177.0 (2)
C19—C18—C17—C1658.0 (3)C23—C22—C29—C282.6 (3)
C23—C18—C17—C16126.4 (2)C1—C6—C5—C42.3 (3)
C13—C8—C9—C100.0 (3)C7—C6—C5—C4175.8 (2)
S1—C8—C9—C10178.60 (15)C23—C26—C27—C281.5 (3)
C1—N1—C15—C1667.76 (17)C22—C21—C20—C191.5 (4)
S1—N1—C15—C16146.88 (12)C18—C19—C20—C212.2 (4)
C17—C16—C15—N1108.93 (19)C22—C29—C28—C271.4 (4)
C24—C16—C15—N172.38 (17)C26—C27—C28—C290.6 (4)
C2—C1—C6—C52.6 (3)C10—C11—C12—C130.3 (4)
N1—C1—C6—C5177.71 (17)C14—C11—C12—C13179.4 (2)
C2—C1—C6—C7175.45 (18)C8—C13—C12—C110.5 (4)
N1—C1—C6—C74.3 (3)C6—C5—C4—C30.3 (4)
C25—O5—C24—O43.5 (3)C2—C3—C4—C51.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C22/C23/C26–C29 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25A···O4i0.962.503.462 (3)177
C10—H10···O2ii0.932.443.305 (2)155
C17—H17···Cgiii0.932.783.528 (2)138
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC29H25NO5S
Mr499.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0162 (3), 12.0887 (5), 13.8703 (6)
α, β, γ (°)107.788 (2), 90.068 (1), 93.446 (2)
V3)1277.27 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.23 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
22485, 4932, 3520
Rint0.031
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.01
No. of reflections4932
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C22/C23/C26–C29 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25A···O4i0.962.503.462 (3)177.1
C10—H10···O2ii0.932.443.305 (2)155.3
C17—H17···Cgiii0.932.783.528 (2)138.0
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). In Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMadhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, o3511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.  Google Scholar
First citationMerlino, S. (1971). Acta Cryst. B27, 2491–2492.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o330-o331
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds