metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m227-m228

Chlorido(1,2-di­methyl-1H-imidazole-κN3){2-[(diphen­­oxy­phosphan­yl)­­oxy]phenyl-κ2C1,P}palladium(II)

aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: andrzej@netesa.com

(Received 24 January 2012; accepted 26 January 2012; online 31 January 2012)

The Pd atom in the title compound, [Pd(C18H14O3P)Cl(C5H8N2)], adopts a slightly distorted square-planar coordination geometry, with the metallated carbon positioned trans to the Cl atom. The crystal structure is stabilized by several weak C—H⋯O and C—H⋯Cl hydrogen-bond inter­actions. One of the phenyl rings is disordered over two almost equally occupied sites.

Related literature

The structure of the title compound was determined as part of a larger study on orthopalladated triaryl­phosphite complexes. For related structures and further discussion, see: Albinati et al. (1990[Albinati, A., Affolter, S. & Pregosin, P. S. (1990). Organometallics, 9, 379-387.]); Błaszczyk et al. (2011[Błaszczyk, I., Gniewek, A. & Trzeciak, A. M. (2011). J. Organomet. Chem. 696, 3601-3607.]). For the catalytic reactions, see: Miyaura et al. (1981[Miyaura, N., Yanagi, T. & Suzuki, A. (1981). Synth. Commun. 11, 513-519.]); Sonogashira et al. (1975[Sonogashira, K., Tohda, Y. & Nagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]). For bond lengths in coordination complexes, see: Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]). For hydrogen-bond inter­actions, see: Aullón et al. (1998[Aullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653-654.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]); and for specifications of analytical numeric absorption correction, see: Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C18H14O3P)Cl(C5H8N2)]

  • Mr = 547.25

  • Triclinic, [P \overline 1]

  • a = 9.212 (4) Å

  • b = 9.370 (4) Å

  • c = 14.295 (5) Å

  • α = 85.30 (3)°

  • β = 84.83 (3)°

  • γ = 69.08 (3)°

  • V = 1146.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 100 K

  • 0.34 × 0.16 × 0.12 mm

Data collection
  • Kuma KM-4 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]) Tmin = 0.812, Tmax = 0.908

  • 12801 measured reflections

  • 5113 independent reflections

  • 4855 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.37

  • 5113 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd—C11 2.003 (3)
Pd—N41 2.088 (3)
Pd—P 2.1667 (12)
Pd—Cl 2.3890 (12)
P—Pd—Cl 94.52 (4)
P—Pd—C11 81.51 (10)
C11—Pd—N41 93.91 (12)
N41—Pd—Cl 89.88 (8)
C11—Pd—Cl 175.48 (8)
N41—Pd—P 173.55 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3i 0.95 2.66 3.365 (4) 132
C15—H15⋯Cli 0.95 2.80 3.720 (4) 162
C33—H33⋯Clii 0.95 2.88 3.541 (4) 128
C35—H35⋯Cliii 0.95 2.89 3.817 (4) 164
C44—H44⋯Cliv 0.95 2.78 3.651 (4) 154
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbon-carbon bond-forming catalytic reactions are very important fundamental processes in synthetic chemistry. Among them, the commonly recognized are the Suzuki-Miyaura reaction that leads to formation of biphenyl derivates (Miyaura et al., 1981) and the Sonogashira reaction, which produces phenylated alkines (Sonogashira et al., 1975). In this paper we report the crystallization of a palladacyclic triphenylphosphite complex with a 1,2-dimethylimidazole ligand, the title compound. This complex exhibited high catalytic activity in the Suzuki-Miyaura reaction in ethylene glycol and in the Sonogashira reaction in ionic liquids (Błaszczyk et al., 2011).

The molecular structure of the title compound reveals that the coordination environment of the Pd atom is a slightly distorted square-planar (Fig. 1). The angles between adjacent ligands deviate somewhat from the expected value of 90° (Table 1). However, the observed bond distances and angles are similar to the already reported for analogous complexes (Błaszczyk et al., 2011). In the title compound the metallated carbon is in the trans orientation to the Cl atom. As a result of the trans influence of the aryl group, the Pd—Cl bond length (Table 1) appears somewhat longer than expected for palladium complexes: 2.298–2.354Å (Orpen et al., 1989). The imidazole ring is oriented at 75.7° with respect to the coordination plane of palladium. The C21—C26 phenyl ring is disordered over two positions with site occupancy factors about 51 and 49%.

The structure is stabilized by a few weak hydrogen bonds of the C—H···O and C—H···Cl types (Desiraju & Steiner, 1999). Consequently, a three-dimensional network of such interactions is formed in the crystal. The shortest C—H···Cl distances observed in the title compound are similar to the values of the N—H···Cl hydrogen bonds identified for Cl bonded to a transition metal (Aullón et al., 1998).

Related literature top

The structure of the title compound was determined as part of a larger study on orthopalladated triarylphosphite complexes. For related structures and further discussion, see: Albinati et al. (1990); Błaszczyk et al. (2011). For the catalytic reactions, see: Miyaura et al. (1981); Sonogashira et al. (1975). For bond lengths in coordination complexes, see: Orpen et al. (1989). For hydrogen-bond interactions, see: Aullón et al. (1998); Desiraju & Steiner (1999). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986); and for specifications of analytical numeric absorption correction, see: Clark & Reid (1995).

Experimental top

The title compound was prepared according to the previously reported procedure (Błaszczyk et al., 2011): 1,2-dimethylimidazole (0.128 g, 1,32 mmol) was added to the solution of [PdCl{P(OC6H4)(OC6H5)2}]2 (0.30 g, 0.33 mmol) in dichloromethane (4 ml). The starting dimeric palladyclic complex [PdCl{P(OC6H4)(OC6H5)2}]2 had been obtained according to published method (Albinati et al., 1990). The solution was stirred at room temperature for 1 h. The solvent was evaporated in vacuo and the white product was precipitated by addition of ethanol and recrystallized from a mixure of dichloromethane and ethanol. Yield: 0.35 g, 97%. Analysis calculated: C 50.48, H 4.05, N 5.12%; found: C 50.30, H 3.98, N 4.93%. 1H NMR (CDCl3): δ 8.27 (1H, t, J = 6.1 Hz; orthopalladated ring), 6.30–7.60 (m, Ph), 3.54 (3H, s, CH3; major isomer), 3.45 (3H, s, CH3; minor isomer), 2.29 (3H, s, CH3; major isomer), 2.07 (3H, s, CH3; minor isomer). 31P NMR (CDCl3): δ 132.17 (major isomer), 124.70 (minor isomer).

Refinement top

All the carbon-bonded H atoms were positioned geometrically and refined using a riding model with aromatic C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). The methyl groups were refined with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C). One of the phenyl rings is disordered over two sites with a site occupation factor of 0.512 (8) for the major occupied site. The highest residual peak and the deepest hole in the final difference map are located 0.73 and 0.80Å from the C32 and H26B atom, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Disordered parts with lower occupancy are represented by dashed lines.
Chlorido(1,2-dimethyl-1H-imidazole-κN3){2- [(diphenoxyphosphanyl)oxy]phenyl-κ2C1,P}palladium(II) top
Crystal data top
[Pd(C18H14O3P)Cl(C5H8N2)]Z = 2
Mr = 547.25F(000) = 552
Triclinic, P1Dx = 1.586 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.212 (4) ÅCell parameters from 8960 reflections
b = 9.370 (4) Åθ = 5.0–27.5°
c = 14.295 (5) ŵ = 1.02 mm1
α = 85.30 (3)°T = 100 K
β = 84.83 (3)°Plate, colorless
γ = 69.08 (3)°0.34 × 0.16 × 0.12 mm
V = 1146.2 (8) Å3
Data collection top
Kuma KM-4 CCD
diffractometer
5113 independent reflections
Radiation source: fine-focus sealed tube4855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 5.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
h = 1111
Tmin = 0.812, Tmax = 0.908k = 1210
12801 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.37 w = 1/[σ2(Fo2) + (0.0102P)2 + 2.9228P]
where P = (Fo2 + 2Fc2)/3
5113 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Pd(C18H14O3P)Cl(C5H8N2)]γ = 69.08 (3)°
Mr = 547.25V = 1146.2 (8) Å3
Triclinic, P1Z = 2
a = 9.212 (4) ÅMo Kα radiation
b = 9.370 (4) ŵ = 1.02 mm1
c = 14.295 (5) ÅT = 100 K
α = 85.30 (3)°0.34 × 0.16 × 0.12 mm
β = 84.83 (3)°
Data collection top
Kuma KM-4 CCD
diffractometer
5113 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
4855 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.908Rint = 0.023
12801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.37Δρmax = 0.39 e Å3
5113 reflectionsΔρmin = 0.40 e Å3
319 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 K. Analytical numeric absorption correction was carried out with CrysAlis RED (Oxford Diffraction, 2010) using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd0.17867 (3)0.19205 (3)0.287224 (16)0.01206 (7)
Cl0.37905 (9)0.25690 (9)0.34805 (6)0.01847 (16)
P0.32350 (9)0.07995 (9)0.16750 (6)0.01384 (16)
O10.2280 (3)0.0022 (3)0.11667 (16)0.0180 (5)
O20.3945 (3)0.1646 (3)0.08571 (17)0.0218 (5)
O30.4854 (2)0.0534 (2)0.18349 (16)0.0173 (5)
C110.0240 (4)0.1235 (3)0.2318 (2)0.0150 (6)
C120.0744 (4)0.0299 (3)0.1564 (2)0.0150 (6)
C130.0176 (4)0.0347 (4)0.1165 (2)0.0209 (7)
H130.02370.10210.06680.025*
C140.1716 (4)0.0014 (4)0.1510 (3)0.0226 (7)
H140.23740.04050.12440.027*
C150.2290 (4)0.0983 (4)0.2240 (3)0.0212 (7)
H150.33490.12450.24670.025*
C160.1326 (4)0.1576 (4)0.2644 (2)0.0172 (6)
H160.17350.22270.31530.021*
C210.3189 (4)0.3137 (4)0.0487 (2)0.0192 (7)
C22A0.2635 (12)0.3470 (9)0.0393 (6)0.0265 (18)0.512 (8)
H22A0.26460.26640.07600.032*0.512 (8)
C23A0.2057 (12)0.4969 (9)0.0752 (6)0.0266 (18)0.512 (8)
H23A0.17030.51510.13690.032*0.512 (8)
C22B0.2028 (10)0.3323 (9)0.0075 (6)0.0205 (16)0.488 (8)
H22B0.16670.25120.01550.025*0.488 (8)
C23B0.1383 (11)0.4748 (10)0.0532 (6)0.0242 (18)0.488 (8)
H23B0.05880.49310.09540.029*0.488 (8)
C240.1979 (5)0.6019 (5)0.0343 (4)0.0454 (13)
H240.16320.70060.06540.054*
C25A0.2420 (8)0.5870 (8)0.0695 (5)0.0246 (18)0.512 (8)
H25A0.23050.67290.10440.030*0.512 (8)
C26A0.2995 (8)0.4382 (8)0.1067 (6)0.0235 (18)0.512 (8)
H26A0.32600.41830.17040.028*0.512 (8)
C25B0.3224 (9)0.5607 (8)0.0083 (5)0.0251 (19)0.488 (8)
H25B0.37520.63140.00770.030*0.488 (8)
C26B0.3876 (8)0.4183 (8)0.0560 (5)0.0179 (17)0.488 (8)
H26B0.47580.39590.09190.022*0.488 (8)
C310.4900 (4)0.1763 (4)0.2486 (2)0.0176 (6)
C320.4921 (5)0.3100 (4)0.2149 (3)0.0357 (10)
H320.48430.31760.14980.043*
C330.5056 (7)0.4331 (5)0.2778 (3)0.0476 (13)
H330.50910.52710.25550.057*
C340.5142 (5)0.4215 (4)0.3726 (3)0.0315 (9)
H340.52140.50650.41540.038*
C350.5123 (4)0.2865 (4)0.4047 (3)0.0250 (7)
H350.51900.27860.46990.030*
C360.5005 (4)0.1614 (4)0.3424 (2)0.0218 (7)
H360.49970.06800.36420.026*
N410.0314 (3)0.2786 (3)0.40502 (19)0.0162 (5)
C420.0513 (4)0.2164 (4)0.4918 (2)0.0173 (6)
N430.0556 (3)0.3072 (3)0.5523 (2)0.0215 (6)
C440.1489 (4)0.4326 (4)0.5023 (3)0.0247 (7)
H440.23460.51530.52660.030*
C450.0937 (4)0.4145 (4)0.4108 (2)0.0214 (7)
H450.13450.48390.35930.026*
C460.1716 (4)0.0676 (4)0.5190 (3)0.0248 (7)
H46A0.25260.08600.55100.037*
H46B0.21840.01140.46250.037*
H46C0.12320.00740.56140.037*
C470.0743 (5)0.2778 (5)0.6540 (3)0.0351 (9)
H47A0.12170.19910.66670.053*
H47B0.14170.37230.68290.053*
H47C0.02780.24230.68060.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01199 (11)0.01131 (11)0.01229 (12)0.00371 (8)0.00158 (8)0.00174 (8)
Cl0.0169 (3)0.0196 (4)0.0210 (4)0.0083 (3)0.0018 (3)0.0075 (3)
P0.0139 (4)0.0121 (4)0.0140 (4)0.0037 (3)0.0029 (3)0.0007 (3)
O10.0159 (11)0.0207 (11)0.0161 (11)0.0048 (9)0.0028 (9)0.0058 (9)
O20.0257 (12)0.0151 (11)0.0198 (12)0.0046 (9)0.0103 (10)0.0012 (9)
O30.0136 (10)0.0136 (10)0.0230 (12)0.0038 (8)0.0031 (9)0.0001 (9)
C110.0141 (14)0.0149 (14)0.0156 (14)0.0049 (11)0.0022 (11)0.0028 (12)
C120.0144 (14)0.0152 (14)0.0137 (14)0.0040 (11)0.0001 (11)0.0022 (12)
C130.0262 (17)0.0216 (16)0.0154 (15)0.0087 (14)0.0018 (13)0.0024 (13)
C140.0221 (17)0.0251 (17)0.0249 (17)0.0131 (14)0.0060 (14)0.0014 (14)
C150.0161 (15)0.0214 (16)0.0269 (18)0.0082 (13)0.0014 (13)0.0020 (14)
C160.0166 (15)0.0151 (14)0.0184 (15)0.0044 (12)0.0019 (12)0.0015 (12)
C210.0191 (15)0.0187 (16)0.0175 (15)0.0059 (12)0.0039 (12)0.0026 (13)
C22A0.041 (5)0.020 (4)0.019 (4)0.012 (3)0.008 (4)0.005 (3)
C23A0.033 (5)0.022 (4)0.017 (4)0.002 (3)0.000 (3)0.006 (3)
C22B0.020 (4)0.020 (4)0.023 (4)0.009 (3)0.000 (3)0.001 (3)
C23B0.020 (4)0.030 (4)0.022 (4)0.008 (3)0.003 (3)0.005 (3)
C240.027 (2)0.037 (3)0.062 (3)0.0071 (18)0.000 (2)0.034 (2)
C25A0.025 (4)0.018 (3)0.032 (4)0.009 (3)0.003 (3)0.003 (3)
C26A0.020 (4)0.019 (3)0.030 (4)0.006 (3)0.007 (3)0.000 (3)
C25B0.035 (4)0.022 (4)0.022 (4)0.016 (3)0.001 (3)0.003 (3)
C26B0.023 (4)0.021 (3)0.011 (3)0.010 (3)0.003 (3)0.001 (3)
C310.0125 (14)0.0144 (14)0.0250 (17)0.0040 (11)0.0034 (12)0.0035 (13)
C320.060 (3)0.0213 (18)0.032 (2)0.0178 (18)0.025 (2)0.0042 (16)
C330.084 (4)0.022 (2)0.049 (3)0.028 (2)0.038 (3)0.0105 (19)
C340.037 (2)0.0216 (18)0.039 (2)0.0123 (16)0.0185 (18)0.0119 (16)
C350.0239 (17)0.0234 (17)0.0231 (17)0.0028 (14)0.0045 (14)0.0020 (14)
C360.0235 (17)0.0168 (15)0.0232 (17)0.0047 (13)0.0000 (13)0.0034 (13)
N410.0158 (12)0.0161 (13)0.0165 (13)0.0053 (10)0.0010 (10)0.0036 (10)
C420.0157 (15)0.0180 (15)0.0183 (15)0.0060 (12)0.0014 (12)0.0030 (12)
N430.0237 (14)0.0236 (14)0.0147 (13)0.0057 (12)0.0033 (11)0.0035 (11)
C440.0250 (17)0.0212 (17)0.0212 (17)0.0006 (14)0.0031 (14)0.0028 (14)
C450.0211 (16)0.0174 (16)0.0217 (17)0.0019 (13)0.0000 (13)0.0028 (13)
C460.0254 (18)0.0217 (17)0.0205 (17)0.0012 (14)0.0006 (14)0.0026 (14)
C470.042 (2)0.038 (2)0.0152 (17)0.0047 (18)0.0085 (16)0.0018 (16)
Geometric parameters (Å, º) top
Pd—C112.003 (3)C24—H240.9500
Pd—N412.088 (3)C25A—C26A1.381 (11)
Pd—P2.1667 (12)C25A—H25A0.9500
Pd—Cl2.3890 (12)C26A—H26A0.9500
P—O21.582 (2)C25B—C26B1.400 (11)
P—O31.588 (2)C25B—H25B0.9500
P—O11.607 (3)C26B—H26B0.9500
O1—C121.412 (4)C31—C321.373 (5)
O2—C211.403 (4)C31—C361.375 (5)
O3—C311.411 (4)C32—C331.379 (5)
C11—C121.386 (5)C32—H320.9500
C11—C161.404 (5)C33—C341.379 (5)
C12—C131.385 (5)C33—H330.9500
C13—C141.388 (5)C34—C351.375 (5)
C13—H130.9500C34—H340.9500
C14—C151.380 (5)C35—C361.390 (5)
C14—H140.9500C35—H350.9500
C15—C161.388 (5)C36—H360.9500
C15—H150.9500N41—C421.326 (4)
C16—H160.9500N41—C451.381 (4)
C21—C22B1.348 (8)C42—N431.345 (4)
C21—C26B1.358 (8)C42—C461.486 (4)
C21—C22A1.370 (8)N43—C441.372 (4)
C21—C26A1.437 (8)N43—C471.464 (4)
C22A—C23A1.385 (11)C44—C451.361 (4)
C22A—H22A0.9500C44—H440.9500
C23A—C241.162 (10)C45—H450.9500
C23A—H23A0.9500C46—H46A0.9800
C22B—C23B1.386 (11)C46—H46B0.9800
C22B—H22B0.9500C46—H46C0.9800
C23B—C241.530 (10)C47—H47A0.9800
C23B—H23B0.9500C47—H47B0.9800
C24—C25A1.556 (10)C47—H47C0.9800
C24—C25B1.267 (10)
P—Pd—Cl94.52 (4)C26A—C25A—C24114.3 (7)
P—Pd—C1181.51 (10)C26A—C25A—H25A122.9
C11—Pd—N4193.91 (12)C24—C25A—H25A122.9
N41—Pd—Cl89.88 (8)C25A—C26A—C21119.7 (7)
C11—Pd—Cl175.48 (8)C25A—C26A—H26A120.1
N41—Pd—P173.55 (8)C21—C26A—H26A120.1
O2—P—O393.7 (2)C26B—C25B—C24124.5 (7)
O2—P—O1105.7 (2)C24—C25B—H25B117.8
O3—P—O1103.4 (2)C26B—C25B—H25B117.8
O3—P—Pd119.78 (9)C21—C26B—C25B116.9 (7)
O2—P—Pd124.07 (9)C21—C26B—H26B121.5
O1—P—Pd107.73 (9)C25B—C26B—H26B121.5
C12—O1—P113.1 (2)C32—C31—C36122.2 (4)
C21—O2—P125.1 (2)C32—C31—O3118.3 (3)
C31—O3—P119.2 (2)C36—C31—O3119.4 (3)
C12—C11—C16115.9 (3)C31—C32—C33118.4 (4)
C12—C11—Pd118.3 (2)C31—C32—H32120.8
C16—C11—Pd125.8 (2)C33—C32—H32120.8
C13—C12—C11123.9 (3)C32—C33—C34120.9 (4)
C13—C12—O1117.2 (3)C32—C33—H33119.5
C11—C12—O1118.9 (3)C34—C33—H33119.5
C12—C13—C14118.4 (3)C35—C34—C33119.7 (4)
C12—C13—H13120.8C35—C34—H34120.2
C14—C13—H13120.8C33—C34—H34120.2
C15—C14—C13120.0 (3)C34—C35—C36120.4 (4)
C15—C14—H14120.0C34—C35—H35119.8
C13—C14—H14120.0C36—C35—H35119.8
C14—C15—C16120.3 (3)C31—C36—C35118.4 (4)
C14—C15—H15119.9C31—C36—H36120.8
C16—C15—H15119.9C35—C36—H36120.8
C15—C16—C11121.5 (3)C42—N41—C45106.8 (3)
C15—C16—H16119.2C42—N41—Pd124.8 (3)
C11—C16—H16119.2C45—N41—Pd128.1 (3)
C22B—C21—C26B124.7 (5)N41—C42—N43109.9 (3)
C22B—C21—O2116.3 (4)N41—C42—C46125.5 (3)
C26B—C21—O2117.5 (4)N43—C42—C46124.6 (3)
C22A—C21—O2123.8 (4)C42—N43—C44108.4 (3)
C26A—C21—O2117.7 (4)C42—N43—C47126.7 (3)
C22A—C21—C26A118.5 (5)C44—N43—C47124.9 (3)
C21—C22A—C23A120.6 (7)C45—C44—N43106.1 (3)
C21—C22A—H22A119.7C45—C44—H44127.0
C23A—C22A—H22A119.7N43—C44—H44127.0
C24—C23A—C22A123.9 (7)C44—C45—N41108.8 (3)
C24—C23A—H23A118.0C44—C45—H45125.6
C22A—C23A—H23A118.0N41—C45—H45125.6
C21—C22B—C23B117.2 (7)C42—C46—H46A109.5
C21—C22B—H22B121.4C42—C46—H46B109.5
C23B—C22B—H22B121.4H46A—C46—H46B109.5
C22B—C23B—C24118.6 (7)C42—C46—H46C109.5
C22B—C23B—H23B120.7H46A—C46—H46C109.5
C24—C23B—H23B120.7H46B—C46—H46C109.5
C23B—C24—C25B116.2 (5)N43—C47—H47A109.5
C23A—C24—C25A122.5 (5)N43—C47—H47B109.5
C23A—C24—H24118.7H47A—C47—H47B109.5
C25B—C24—H24118.5N43—C47—H47C109.5
C23B—C24—H24123.3H47A—C47—H47C109.5
C25A—C24—H24118.7H47B—C47—H47C109.5
C11—Pd—P—O2118.0 (2)C26B—C21—C22B—C23B7.2 (12)
Cl—Pd—P—O264.2 (2)O2—C21—C22B—C23B173.0 (6)
C11—Pd—P—O3123.6 (2)C21—C22B—C23B—C242.3 (12)
Cl—Pd—P—O354.2 (1)C22A—C23A—C24—C25A4.1 (12)
C11—Pd—P—O16.0 (2)C22B—C23B—C24—C25B12.9 (12)
Cl—Pd—P—O1171.79 (9)C23A—C24—C25A—C26A3.6 (9)
O2—P—O1—C12129.3 (2)C24—C25A—C26A—C212.2 (9)
O3—P—O1—C12132.9 (2)C22A—C21—C26A—C25A7.2 (9)
Pd—P—O1—C125.2 (2)O2—C21—C26A—C25A172.6 (6)
O3—P—O2—C21167.0 (3)C22B—C21—C26B—C25B6.3 (9)
O1—P—O2—C2188.0 (3)O2—C21—C26B—C25B171.9 (6)
Pd—P—O2—C2136.9 (3)C24—C25B—C26B—C216.0 (12)
O2—P—O3—C31175.5 (2)P—O3—C31—C3299.1 (3)
O1—P—O3—C3168.4 (3)P—O3—C31—C3684.2 (3)
Pd—P—O3—C3151.4 (3)C36—C31—C32—C330.2 (6)
N41—Pd—C11—C12168.8 (2)O3—C31—C32—C33176.3 (4)
P—Pd—C11—C126.7 (2)C31—C32—C33—C341.1 (8)
N41—Pd—C11—C169.0 (3)C32—C33—C34—C351.3 (7)
P—Pd—C11—C16175.6 (3)C33—C34—C35—C360.5 (6)
C16—C11—C12—C133.1 (5)C32—C31—C36—C350.5 (5)
Pd—C11—C12—C13174.9 (2)O3—C31—C36—C35177.0 (3)
C16—C11—C12—O1176.5 (3)C34—C35—C36—C310.4 (5)
Pd—C11—C12—O15.5 (4)C11—Pd—N41—C42109.1 (3)
P—O1—C12—C13179.3 (3)Cl—Pd—N41—C4268.4 (3)
P—O1—C12—C110.3 (3)C11—Pd—N41—C4577.3 (3)
C11—C12—C13—C143.0 (5)Cl—Pd—N41—C45105.2 (3)
O1—C12—C13—C14176.7 (3)C45—N41—C42—N430.2 (4)
C12—C13—C14—C150.7 (5)Pd—N41—C42—N43174.6 (2)
C13—C14—C15—C161.2 (5)C45—N41—C42—C46179.0 (3)
C14—C15—C16—C111.0 (5)Pd—N41—C42—C466.3 (5)
C12—C11—C16—C151.0 (4)N41—C42—N43—C440.4 (4)
Pd—C11—C16—C15176.8 (2)C46—C42—N43—C44178.7 (3)
P—O2—C21—C22B74.0 (6)N41—C42—N43—C47178.8 (4)
P—O2—C21—C26B119.1 (6)C46—C42—N43—C470.3 (6)
P—O2—C21—C22A109.2 (6)C42—N43—C44—C450.5 (4)
P—O2—C21—C26A70.9 (6)C47—N43—C44—C45179.0 (4)
O2—C21—C22A—C23A172.8 (6)N43—C44—C45—N410.5 (4)
C26A—C21—C22A—C23A7.0 (12)C42—N41—C45—C440.2 (4)
C21—C22A—C23A—C241.3 (12)Pd—N41—C45—C44174.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O3i0.952.663.365 (4)132
C15—H15···Cli0.952.803.720 (4)162
C33—H33···Clii0.952.883.541 (4)128
C35—H35···Cliii0.952.893.817 (4)164
C44—H44···Cliv0.952.783.651 (4)154
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pd(C18H14O3P)Cl(C5H8N2)]
Mr547.25
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.212 (4), 9.370 (4), 14.295 (5)
α, β, γ (°)85.30 (3), 84.83 (3), 69.08 (3)
V3)1146.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.34 × 0.16 × 0.12
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.812, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
12801, 5113, 4855
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.37
No. of reflections5113
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.40

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Pd—C112.003 (3)Pd—P2.1667 (12)
Pd—N412.088 (3)Pd—Cl2.3890 (12)
P—Pd—Cl94.52 (4)N41—Pd—Cl89.88 (8)
P—Pd—C1181.51 (10)C11—Pd—Cl175.48 (8)
C11—Pd—N4193.91 (12)N41—Pd—P173.55 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O3i0.952.663.365 (4)132
C15—H15···Cli0.952.803.720 (4)162
C33—H33···Clii0.952.883.541 (4)128
C35—H35···Cliii0.952.893.817 (4)164
C44—H44···Cliv0.952.783.651 (4)154
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

This work was supported by European funds in the frame of the Human Capital Operational Programme through project No. POKL.04.01.01–00-054/10–00 `Development of the potential and educational offer of the University of Wrocław – the chance to enhance the competitiveness of the University'. The financial support is gratefully acknowledged.

References

First citationAlbinati, A., Affolter, S. & Pregosin, P. S. (1990). Organometallics, 9, 379–387.  CrossRef CAS Google Scholar
First citationAullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654.  Google Scholar
First citationBłaszczyk, I., Gniewek, A. & Trzeciak, A. M. (2011). J. Organomet. Chem. 696, 3601–3607.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMiyaura, N., Yanagi, T. & Suzuki, A. (1981). Synth. Commun. 11, 513–519.  CrossRef CAS Web of Science Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonogashira, K., Tohda, Y. & Nagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m227-m228
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds