organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyano-11-oxo-3,4-seco-12a-aza-C-homoolean-4(23)-en-28-oic acid methyl ester

aDepartment of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, and cFaculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 14 December 2011; accepted 23 January 2012; online 31 January 2012)

The title compound, C31H48N2O3, is a Beckmann rearrangement product. The isopropenyl and meth­oxy­carbonyl groups have β-orientations, whereas the 2-cyano­ethyl group has an α-orientation. In the triterpenoid skeleton, the seven-membered lactam ring, as well as the three six-membered carbocyclic rings, have chair conformations. In the crystal, mol­ecules are linked via nonclassical C—H⋯O hydrogen bonds into layers parallel to the ab plane.

Related literature

For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Froelich & Gzella (2010[Froelich, A. & Gzella, A. K. (2010). Acta Cryst. E66, o2790.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature on the Beckmann rearrangement reaction, see: Bednarczyk-Cwynar (2006[Bednarczyk-Cwynar, B. (2006). PhD thesis, Poznan University of Medical Sciences, Poznań, Poland.]).

[Scheme 1]

Experimental

Crystal data
  • C31H48N2O3

  • Mr = 496.71

  • Monoclinic, P 21

  • a = 6.8549 (10) Å

  • b = 11.711 (2) Å

  • c = 17.356 (3) Å

  • β = 91.607 (13)°

  • V = 1392.7 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.45 × 0.20 × 0.12 mm

Data collection
  • Kuma Diffraction KM-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.830, Tmax = 0.929

  • 5219 measured reflections

  • 5045 independent reflections

  • 4815 reflections with I > 2σ(I)

  • Rint = 0.038

  • 2 standard reflections every 100 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.07

  • 5045 reflections

  • 337 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2248 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O2i 0.97 2.57 3.508 (3) 163
C31—H31B⋯O1ii 0.96 2.43 3.357 (3) 163
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z.

Data collection: KM-4 Software (Kuma Diffraction, 1996[Kuma Diffraction (1996). KM-4 Software. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The title compound was obtained from 3,12-dioxo-18β-olean-28-oic acid methyl ester as a product of the two-step synthesis. In the first step the diketone derivative mentioned above undergone the condensation with hydroxylamine hydrochloride to give the oxime derivative as a product. The latter reacted with POCl3 (Beckmann rearrangement reaction) (Bednarczyk-Cwynar, 2006). The results of the X-ray analysis showed that the final product is 3-cyano-11-oxo-3,4-seco-12a-aza-C-homoolean-4(23)-en-28-oic acid methyl ester, (I), (Fig. 1). Molecular structure obtained in the course of the X-ray investigation showed that oxime derivative formation and Beckmann rearrangement reaction took place within two triterpenoid rings, i.e. A and C. In ring C Beckmann rearrangement reaction took place while in ring A Beckmann fragmentation was observed.

As a result of Beckmann fragmentation C3—C4 bond cleavage and ring A opening were observed. In this process two new functions were formed. In C10 position 2-cyanoethyl group is observed. It reveals α-configuration and comprises of atoms C1, C2 and C3 of the original ring A. The linear fragment of this group consisting of atoms C2, C3 and N1 reveals conformation halfway between anticlinal and antiperiplanar (+ac/+ap) with respect to the C1—C10 bond [torsion angle C3—C2—C1—C10: 162.75 (17)°]. The C1—C2 bond is anticlinal (-ac) with respect to C5—C10 bond belonging to ring B [torsion angle C2—C1—C10—C25: 174.38 (15)°]. The other function formed as the result of the cleavage of ring A consists of atoms C4, C23 and C24. They form almost planar group (r.m.s. = 0.012 Å) along with C5 atom belonging to ring B. The dihedral angle between the mean plane of the new group and the least-squares plane of ring B is 67.10 (8)°. The C4C23 double bond in isopropenyl residue reveals conformation halfway between synclinal and anticlinal (+sc/+ac) [torsion angle C23—C4—C5—C10: 93.3 (2)°]. The angular orientation of isopropenyl group described above is most probably caused by the sterical hindrance created by the cyanoethyl group.

The axial methyl group C25 adopts β-orientation while hydrogen atom in C5 position reveals α-orientation. Thus, both of these substituents retain the orientation observed in oleanolic acid molecules (Froelich & Gzella, 2010).

In the molecule of (I) the original six-membered carbocyclic ring C has been transformed into the seven-membered lactam ring in which nitrogen atom connects carbonyl group (C12O1) and tertiary carbon atom C13.

The C12—N2 bond distance of 1.338 (2) Å is comparable with the normal length of the single (C*—)NH—C(O) bond in secondary amide which is 1.334 (1) Å (Allen et al., 1987).

Seven-membered lactam ring adopts chair conformation {Cremer & Pople (1975) parameters: Q(2) = 0.388 (2) Å, Q(3) = 0.695 (2) Å, ϕ(2) = 319.8 (3)°, ϕ(3) = 282.53 (15)°}, as well as six-membered rings B, D and E.

Rings B/C and C/D are trans-fused [the dihedral angles 16.63 (10) and 19.07 (10)°, respectively], while rings D/E are cis-fused [the dihedral angle 56.69 (7)°]

The planar ester group in C17 is attached axially to ring D and equatorially to ring E. Its carbonyl (C28O2) group is synperiplanar (-sp) with respect to C17—C18 bond belonging to both D and E rings [torsion angle C18—C17—C28—O2: -6.5 (3)°].

In the crystal lattice of (I) molecules are linked by nonclasical hydrogen bonds C15—H15B···O2i and C31—H31B···O1ii (Tab. 1, Fig. 2) into layers parallel to the ab plane.

In the molecule of (I) fourteen short H···H contacts are observed. The distances between related hydrogen atoms lie within the range of 1.92 - 2.20 Å. The short contacts are mainly the consequence of the presence of axial methyl groups C25, C26 and C27.

Related literature top

For ring-puckering parameters, see: Cremer & Pople (1975). For a related structure, see: Froelich & Gzella (2010). For bond-length data, see: Allen et al. (1987). For related literature on the Beckmann rearrangement reaction, see: Bednarczyk-Cwynar (2006).

Experimental top

The title compound was synthesized according to the procedure described by Bednarczyk-Cwynar (2006) and dissolved in hot ethanol. The solution was set aside to crystallize at room temperature. After a week block-shaped colourless single crystals suitable for X-ray experiments were obtained.

Refinement top

Except for the amide H atom which was refined freely the remaining H atoms were placed in the idealized positions and were refined within the riding model approximation: Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å, Cmethine—H = 0.98 Å, C(sp2)—H = 0.93 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl groups were refined as rigid groups which were allowed to rotate.

Computing details top

Data collection: KM-4 Software (Kuma Diffraction, 1996); cell refinement: KM-4 Software (Kuma Diffraction, 1996); data reduction: KM-4 Software (Kuma Diffraction, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids; H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen bonding (dotted lines) in the title structure. Symmetry codes: (i) -1 + x, y, z; (ii) x, -1 + y, z. The H atoms have been ommitted for clarity.
3-Cyano-11-oxo-3,4-seco-12a-aza-C-homoolean-4(23)-en-28-oic acid methyl ester top
Crystal data top
C31H48N2O3F(000) = 544
Mr = 496.71Dx = 1.184 Mg m3
Monoclinic, P21Melting point = 532–535 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 6.8549 (10) ÅCell parameters from 45 reflections
b = 11.711 (2) Åθ = 15.5–28.6°
c = 17.356 (3) ŵ = 0.59 mm1
β = 91.607 (13)°T = 293 K
V = 1392.7 (4) Å3Block, colourless
Z = 20.45 × 0.20 × 0.12 mm
Data collection top
Kuma Diffraction KM-4
diffractometer
4815 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Kuma DiffractionRint = 0.038
Graphite monochromatorθmax = 70.2°, θmin = 2.6°
ω–2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 1414
Tmin = 0.830, Tmax = 0.929l = 021
5219 measured reflections2 standard reflections every 100 reflections
5045 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.1756P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.19 e Å3
5045 reflectionsΔρmin = 0.18 e Å3
337 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0184 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2248 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0 (2)
Crystal data top
C31H48N2O3V = 1392.7 (4) Å3
Mr = 496.71Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.8549 (10) ŵ = 0.59 mm1
b = 11.711 (2) ÅT = 293 K
c = 17.356 (3) Å0.45 × 0.20 × 0.12 mm
β = 91.607 (13)°
Data collection top
Kuma Diffraction KM-4
diffractometer
4815 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.830, Tmax = 0.9292 standard reflections every 100 reflections
5219 measured reflections intensity decay: 2%
5045 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112Δρmax = 0.19 e Å3
S = 1.07Δρmin = 0.18 e Å3
5045 reflectionsAbsolute structure: Flack (1983), 2248 Friedel pairs
337 parametersAbsolute structure parameter: 0.0 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3886 (4)0.87517 (15)0.71870 (10)0.0965 (7)
O20.4487 (2)0.37102 (14)0.72260 (12)0.0792 (5)
O30.2567 (2)0.22641 (11)0.68910 (9)0.0656 (4)
N10.1263 (4)1.19826 (19)0.83379 (15)0.0912 (7)
N20.2826 (2)0.70494 (13)0.67747 (10)0.0504 (4)
H20.314 (4)0.726 (3)0.6355 (18)0.084 (9)*
C10.0113 (3)0.92218 (16)0.88714 (10)0.0484 (4)
H1A0.06930.95790.93140.058*
H1B0.12750.93840.89010.058*
C20.0969 (3)0.97888 (16)0.81417 (11)0.0562 (5)
H2A0.01330.96330.77120.067*
H2B0.22450.94670.80210.067*
C30.1146 (4)1.10237 (19)0.82451 (13)0.0641 (5)
C40.3546 (3)0.8199 (2)0.97148 (12)0.0584 (5)
C50.2600 (2)0.76406 (15)0.90290 (10)0.0449 (4)
H50.32680.79560.85700.054*
C60.2932 (3)0.63565 (16)0.89948 (11)0.0500 (4)
H6A0.21340.59860.93920.060*
H6B0.42890.61910.90930.060*
C70.2416 (2)0.58875 (16)0.82117 (11)0.0495 (4)
H7A0.32250.62600.78190.059*
H7B0.27160.50780.81970.059*
C80.0243 (2)0.60564 (14)0.80163 (10)0.0420 (4)
C90.0337 (2)0.73273 (13)0.81839 (9)0.0388 (3)
H90.02650.77670.77600.047*
C100.0390 (2)0.79123 (15)0.89403 (9)0.0418 (3)
C110.2557 (2)0.75245 (16)0.81192 (10)0.0466 (4)
H11A0.29530.81330.84690.056*
H11B0.32400.68360.82820.056*
C120.3157 (3)0.78280 (16)0.73271 (11)0.0521 (4)
C130.2185 (2)0.58645 (13)0.68730 (10)0.0419 (4)
H130.29820.55580.73030.050*
C140.0016 (2)0.57437 (14)0.71198 (10)0.0429 (4)
C150.0613 (3)0.44809 (16)0.70120 (13)0.0538 (4)
H15A0.00460.40370.74340.065*
H15B0.20200.44370.70490.065*
C160.0041 (3)0.39319 (16)0.62579 (13)0.0578 (5)
H16A0.06760.43340.58320.069*
H16B0.04920.31470.62460.069*
C170.2165 (3)0.39543 (14)0.61578 (12)0.0501 (4)
C180.2841 (3)0.52108 (15)0.61409 (11)0.0469 (4)
H180.42700.51870.61770.056*
C190.2329 (3)0.57702 (17)0.53612 (11)0.0590 (5)
H19A0.28370.65430.53640.071*
H19B0.09200.58190.53020.071*
C200.3130 (4)0.51322 (19)0.46598 (12)0.0624 (5)
C210.2325 (4)0.3926 (2)0.46791 (14)0.0715 (6)
H21A0.09200.39560.45970.086*
H21B0.28610.34940.42580.086*
C220.2779 (3)0.33091 (18)0.54247 (14)0.0646 (5)
H22A0.41730.31670.54620.077*
H22B0.21270.25740.54100.077*
C230.4447 (3)0.9196 (2)0.96374 (17)0.0760 (7)
H23A0.50910.95101.00520.091*
H23B0.44360.95810.91690.091*
C240.3574 (4)0.7587 (3)1.04708 (13)0.0835 (8)
H24A0.41380.80731.08500.125*
H24B0.22640.73921.06310.125*
H24C0.43370.69031.04160.125*
C250.0781 (2)0.75743 (19)0.96750 (10)0.0543 (5)
H25A0.21520.76100.95780.081*
H25B0.04410.68110.98210.081*
H25C0.04810.80911.00840.081*
C260.0951 (3)0.52295 (17)0.85416 (12)0.0538 (4)
H26A0.11850.55780.90360.081*
H26B0.21760.50650.83100.081*
H26C0.02340.45330.86040.081*
C270.1286 (3)0.64964 (18)0.65913 (11)0.0548 (4)
H27A0.11930.62420.60680.082*
H27B0.08620.72760.66300.082*
H27C0.26160.64410.67460.082*
C280.3206 (3)0.33311 (16)0.68200 (13)0.0541 (4)
C290.2405 (6)0.5741 (3)0.39255 (14)0.0924 (9)
H29A0.29300.53690.34840.139*
H29B0.28260.65230.39390.139*
H29C0.10060.57120.38930.139*
C300.5346 (4)0.5125 (2)0.46669 (15)0.0751 (6)
H30A0.58320.47250.51150.113*
H30B0.58210.58960.46780.113*
H30C0.57870.47500.42120.113*
C310.3545 (4)0.1580 (2)0.74689 (16)0.0755 (6)
H31A0.49160.17510.74780.113*
H31B0.33530.07860.73510.113*
H31C0.30220.17460.79640.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.163 (2)0.0509 (9)0.0781 (11)0.0462 (11)0.0488 (12)0.0174 (8)
O20.0640 (8)0.0526 (8)0.1192 (14)0.0056 (7)0.0295 (9)0.0127 (9)
O30.0747 (9)0.0372 (7)0.0850 (10)0.0067 (6)0.0025 (7)0.0040 (7)
N10.1190 (19)0.0544 (12)0.0995 (17)0.0080 (12)0.0102 (13)0.0030 (12)
N20.0647 (9)0.0359 (8)0.0514 (9)0.0096 (7)0.0137 (7)0.0032 (7)
C10.0469 (8)0.0499 (10)0.0484 (9)0.0059 (7)0.0021 (7)0.0074 (8)
C20.0689 (11)0.0442 (10)0.0554 (10)0.0012 (8)0.0012 (8)0.0003 (8)
C30.0760 (13)0.0505 (12)0.0658 (12)0.0003 (10)0.0005 (10)0.0003 (10)
C40.0417 (8)0.0764 (14)0.0574 (10)0.0092 (9)0.0090 (7)0.0123 (10)
C50.0358 (7)0.0533 (10)0.0455 (8)0.0014 (7)0.0021 (6)0.0021 (8)
C60.0387 (8)0.0535 (10)0.0581 (10)0.0040 (7)0.0052 (7)0.0099 (8)
C70.0395 (8)0.0430 (9)0.0663 (11)0.0070 (7)0.0043 (7)0.0014 (8)
C80.0368 (7)0.0372 (8)0.0520 (9)0.0013 (6)0.0001 (6)0.0034 (7)
C90.0356 (7)0.0385 (8)0.0421 (8)0.0017 (6)0.0005 (6)0.0034 (6)
C100.0368 (7)0.0466 (9)0.0420 (8)0.0027 (6)0.0016 (6)0.0015 (7)
C110.0382 (7)0.0499 (10)0.0520 (9)0.0083 (7)0.0039 (6)0.0052 (8)
C120.0593 (10)0.0396 (9)0.0583 (10)0.0107 (8)0.0150 (8)0.0049 (8)
C130.0444 (8)0.0297 (8)0.0515 (9)0.0032 (6)0.0013 (7)0.0017 (7)
C140.0386 (8)0.0343 (8)0.0555 (9)0.0009 (6)0.0019 (6)0.0026 (7)
C150.0400 (8)0.0403 (9)0.0811 (12)0.0073 (7)0.0012 (8)0.0086 (9)
C160.0484 (9)0.0410 (10)0.0836 (13)0.0042 (7)0.0053 (9)0.0159 (9)
C170.0519 (9)0.0326 (8)0.0658 (11)0.0014 (7)0.0005 (8)0.0095 (8)
C180.0503 (9)0.0349 (8)0.0554 (10)0.0004 (7)0.0022 (7)0.0054 (7)
C190.0803 (13)0.0431 (10)0.0535 (10)0.0060 (9)0.0029 (9)0.0057 (8)
C200.0824 (13)0.0531 (11)0.0517 (10)0.0031 (10)0.0019 (9)0.0118 (9)
C210.0860 (15)0.0590 (14)0.0694 (13)0.0053 (11)0.0015 (11)0.0255 (11)
C220.0721 (12)0.0412 (10)0.0806 (14)0.0029 (9)0.0046 (10)0.0187 (10)
C230.0614 (12)0.0778 (16)0.0898 (16)0.0003 (11)0.0181 (11)0.0285 (13)
C240.0759 (14)0.120 (2)0.0555 (12)0.0068 (15)0.0195 (10)0.0030 (14)
C250.0429 (8)0.0731 (13)0.0466 (9)0.0053 (8)0.0033 (7)0.0029 (9)
C260.0505 (9)0.0480 (10)0.0627 (11)0.0046 (8)0.0000 (8)0.0135 (9)
C270.0556 (10)0.0539 (11)0.0542 (10)0.0131 (8)0.0081 (8)0.0049 (8)
C280.0470 (9)0.0358 (9)0.0798 (13)0.0019 (7)0.0067 (8)0.0019 (8)
C290.134 (3)0.086 (2)0.0564 (13)0.0207 (17)0.0029 (14)0.0086 (13)
C300.0873 (15)0.0672 (14)0.0718 (14)0.0075 (12)0.0212 (11)0.0135 (11)
C310.0926 (16)0.0482 (11)0.0861 (15)0.0054 (11)0.0117 (13)0.0144 (11)
Geometric parameters (Å, º) top
O1—C121.219 (2)C15—H15B0.9700
O2—C281.196 (3)C16—C171.527 (3)
O3—C281.331 (2)C16—H16A0.9700
O3—C311.435 (3)C16—H16B0.9700
N1—C31.138 (3)C17—C281.522 (3)
N2—C121.338 (2)C17—C181.543 (2)
N2—C131.467 (2)C17—C221.548 (3)
N2—H20.80 (3)C18—C191.535 (3)
C1—C21.532 (3)C18—H180.9800
C1—C101.550 (3)C19—C201.542 (3)
C1—H1A0.9700C19—H19A0.9700
C1—H1B0.9700C19—H19B0.9700
C2—C31.463 (3)C20—C211.517 (3)
C2—H2A0.9700C20—C301.519 (3)
C2—H2B0.9700C20—C291.531 (4)
C4—C231.326 (4)C21—C221.507 (4)
C4—C241.495 (3)C21—H21A0.9700
C4—C51.519 (2)C21—H21B0.9700
C5—C61.522 (3)C22—H22A0.9700
C5—C101.560 (2)C22—H22B0.9700
C5—H50.9800C23—H23A0.9300
C6—C71.517 (3)C23—H23B0.9300
C6—H6A0.9700C24—H24A0.9600
C6—H6B0.9700C24—H24B0.9600
C7—C81.549 (2)C24—H24C0.9600
C7—H7A0.9700C25—H25A0.9600
C7—H7B0.9700C25—H25B0.9600
C8—C261.548 (2)C25—H25C0.9600
C8—C91.566 (2)C26—H26A0.9600
C8—C141.613 (2)C26—H26B0.9600
C9—C111.547 (2)C26—H26C0.9600
C9—C101.574 (2)C27—H27A0.9600
C9—H90.9800C27—H27B0.9600
C10—C251.540 (2)C27—H27C0.9600
C11—C121.489 (2)C29—H29A0.9600
C11—H11A0.9700C29—H29B0.9600
C11—H11B0.9700C29—H29C0.9600
C13—C181.560 (2)C30—H30A0.9600
C13—C141.565 (2)C30—H30B0.9600
C13—H130.9800C30—H30C0.9600
C14—C271.539 (2)C31—H31A0.9600
C14—C151.550 (2)C31—H31B0.9600
C15—C161.519 (3)C31—H31C0.9600
C15—H15A0.9700
C28—O3—C31116.11 (18)C17—C16—H16B109.3
C12—N2—C13127.35 (16)H16A—C16—H16B107.9
C12—N2—H2114 (2)C28—C17—C16110.53 (17)
C13—N2—H2119 (2)C28—C17—C18109.67 (15)
C2—C1—C10116.57 (14)C16—C17—C18108.51 (14)
C2—C1—H1A108.1C28—C17—C22104.70 (15)
C10—C1—H1A108.1C16—C17—C22112.22 (16)
C2—C1—H1B108.1C18—C17—C22111.15 (16)
C10—C1—H1B108.1C19—C18—C17111.23 (15)
H1A—C1—H1B107.3C19—C18—C13116.38 (14)
C3—C2—C1110.99 (17)C17—C18—C13111.02 (14)
C3—C2—H2A109.4C19—C18—H18105.8
C1—C2—H2A109.4C17—C18—H18105.8
C3—C2—H2B109.4C13—C18—H18105.8
C1—C2—H2B109.4C18—C19—C20114.29 (16)
H2A—C2—H2B108.0C18—C19—H19A108.7
N1—C3—C2178.7 (3)C20—C19—H19A108.7
C23—C4—C24119.6 (2)C18—C19—H19B108.7
C23—C4—C5120.5 (2)C20—C19—H19B108.7
C24—C4—C5119.8 (2)H19A—C19—H19B107.6
C4—C5—C6112.90 (15)C21—C20—C30111.0 (2)
C4—C5—C10115.24 (14)C21—C20—C29110.0 (2)
C6—C5—C10110.01 (14)C30—C20—C29108.1 (2)
C4—C5—H5106.0C21—C20—C19107.21 (19)
C6—C5—H5106.0C30—C20—C19111.98 (19)
C10—C5—H5106.0C29—C20—C19108.49 (19)
C7—C6—C5110.75 (15)C22—C21—C20113.50 (18)
C7—C6—H6A109.5C22—C21—H21A108.9
C5—C6—H6A109.5C20—C21—H21A108.9
C7—C6—H6B109.5C22—C21—H21B108.9
C5—C6—H6B109.5C20—C21—H21B108.9
H6A—C6—H6B108.1H21A—C21—H21B107.7
C6—C7—C8113.56 (14)C21—C22—C17114.66 (17)
C6—C7—H7A108.9C21—C22—H22A108.6
C8—C7—H7A108.9C17—C22—H22A108.6
C6—C7—H7B108.9C21—C22—H22B108.6
C8—C7—H7B108.9C17—C22—H22B108.6
H7A—C7—H7B107.7H22A—C22—H22B107.6
C26—C8—C7106.68 (14)C4—C23—H23A120.0
C26—C8—C9110.97 (14)C4—C23—H23B120.0
C7—C8—C9108.74 (13)H23A—C23—H23B120.0
C26—C8—C14110.82 (14)C4—C24—H24A109.5
C7—C8—C14108.33 (13)C4—C24—H24B109.5
C9—C8—C14111.15 (13)H24A—C24—H24B109.5
C11—C9—C8111.94 (13)C4—C24—H24C109.5
C11—C9—C10109.32 (12)H24A—C24—H24C109.5
C8—C9—C10118.94 (13)H24B—C24—H24C109.5
C11—C9—H9105.1C10—C25—H25A109.5
C8—C9—H9105.1C10—C25—H25B109.5
C10—C9—H9105.1H25A—C25—H25B109.5
C25—C10—C1104.82 (14)C10—C25—H25C109.5
C25—C10—C5110.57 (14)H25A—C25—H25C109.5
C1—C10—C5109.34 (14)H25B—C25—H25C109.5
C25—C10—C9114.13 (14)C8—C26—H26A109.5
C1—C10—C9108.89 (13)C8—C26—H26B109.5
C5—C10—C9108.95 (12)H26A—C26—H26B109.5
C12—C11—C9113.62 (15)C8—C26—H26C109.5
C12—C11—H11A108.8H26A—C26—H26C109.5
C9—C11—H11A108.8H26B—C26—H26C109.5
C12—C11—H11B108.8C14—C27—H27A109.5
C9—C11—H11B108.8C14—C27—H27B109.5
H11A—C11—H11B107.7H27A—C27—H27B109.5
O1—C12—N2121.62 (18)C14—C27—H27C109.5
O1—C12—C11121.43 (17)H27A—C27—H27C109.5
N2—C12—C11116.94 (16)H27B—C27—H27C109.5
N2—C13—C18105.97 (13)O2—C28—O3122.1 (2)
N2—C13—C14114.04 (13)O2—C28—C17126.02 (18)
C18—C13—C14118.44 (13)O3—C28—C17111.80 (17)
N2—C13—H13105.8C20—C29—H29A109.5
C18—C13—H13105.8C20—C29—H29B109.5
C14—C13—H13105.8H29A—C29—H29B109.5
C27—C14—C15108.65 (15)C20—C29—H29C109.5
C27—C14—C13108.93 (15)H29A—C29—H29C109.5
C15—C14—C13108.43 (13)H29B—C29—H29C109.5
C27—C14—C8111.55 (13)C20—C30—H30A109.5
C15—C14—C8107.18 (14)C20—C30—H30B109.5
C13—C14—C8111.98 (12)H30A—C30—H30B109.5
C16—C15—C14115.47 (16)C20—C30—H30C109.5
C16—C15—H15A108.4H30A—C30—H30C109.5
C14—C15—H15A108.4H30B—C30—H30C109.5
C16—C15—H15B108.4O3—C31—H31A109.5
C14—C15—H15B108.4O3—C31—H31B109.5
H15A—C15—H15B107.5H31A—C31—H31B109.5
C15—C16—C17111.78 (15)O3—C31—H31C109.5
C15—C16—H16A109.3H31A—C31—H31C109.5
C17—C16—H16A109.3H31B—C31—H31C109.5
C15—C16—H16B109.3
C10—C1—C2—C3162.75 (17)C26—C8—C14—C27175.55 (15)
C23—C4—C5—C6139.1 (2)C7—C8—C14—C2758.84 (18)
C24—C4—C5—C637.0 (2)C9—C8—C14—C2760.56 (17)
C23—C4—C5—C1093.3 (2)C26—C8—C14—C1556.73 (17)
C24—C4—C5—C1090.6 (2)C7—C8—C14—C1559.98 (16)
C4—C5—C6—C7165.88 (14)C9—C8—C14—C15179.38 (13)
C10—C5—C6—C763.84 (18)C26—C8—C14—C1362.06 (17)
C5—C6—C7—C862.0 (2)C7—C8—C14—C13178.77 (14)
C6—C7—C8—C2671.19 (19)C9—C8—C14—C1361.83 (16)
C6—C7—C8—C948.55 (19)C27—C14—C15—C1673.06 (19)
C6—C7—C8—C14169.47 (14)C13—C14—C15—C1645.2 (2)
C26—C8—C9—C1154.52 (18)C8—C14—C15—C16166.26 (14)
C7—C8—C9—C11171.55 (14)C14—C15—C16—C1758.7 (2)
C14—C8—C9—C1169.29 (16)C15—C16—C17—C2858.8 (2)
C26—C8—C9—C1074.57 (17)C15—C16—C17—C1861.5 (2)
C7—C8—C9—C1042.47 (19)C15—C16—C17—C22175.26 (17)
C14—C8—C9—C10161.63 (13)C28—C17—C18—C19162.91 (16)
C2—C1—C10—C25174.38 (15)C16—C17—C18—C1976.3 (2)
C2—C1—C10—C567.07 (19)C22—C17—C18—C1947.6 (2)
C2—C1—C10—C951.9 (2)C28—C17—C18—C1365.79 (18)
C4—C5—C10—C2556.8 (2)C16—C17—C18—C1355.0 (2)
C6—C5—C10—C2572.26 (18)C22—C17—C18—C13178.91 (15)
C4—C5—C10—C158.1 (2)N2—C13—C18—C1948.9 (2)
C6—C5—C10—C1172.83 (14)C14—C13—C18—C1980.7 (2)
C4—C5—C10—C9177.05 (15)N2—C13—C18—C17177.45 (14)
C6—C5—C10—C953.93 (17)C14—C13—C18—C1747.9 (2)
C11—C9—C10—C2552.17 (18)C17—C18—C19—C2055.4 (2)
C8—C9—C10—C2578.11 (18)C13—C18—C19—C20176.09 (16)
C11—C9—C10—C164.55 (17)C18—C19—C20—C2157.8 (2)
C8—C9—C10—C1165.18 (13)C18—C19—C20—C3064.2 (3)
C11—C9—C10—C5176.28 (13)C18—C19—C20—C29176.6 (2)
C8—C9—C10—C546.00 (18)C30—C20—C21—C2266.9 (3)
C8—C9—C11—C1288.72 (17)C29—C20—C21—C22173.5 (2)
C10—C9—C11—C12137.32 (15)C19—C20—C21—C2255.7 (3)
C13—N2—C12—O1172.1 (2)C20—C21—C22—C1753.6 (3)
C13—N2—C12—C119.2 (3)C28—C17—C22—C21166.17 (18)
C9—C11—C12—O1116.4 (2)C16—C17—C22—C2173.9 (2)
C9—C11—C12—N262.4 (2)C18—C17—C22—C2147.8 (2)
C12—N2—C13—C18157.08 (18)C31—O3—C28—O21.8 (3)
C12—N2—C13—C1470.8 (2)C31—O3—C28—C17176.20 (18)
N2—C13—C14—C2748.48 (19)C16—C17—C28—O2126.1 (2)
C18—C13—C14—C2777.27 (18)C18—C17—C28—O26.5 (3)
N2—C13—C14—C15166.56 (15)C22—C17—C28—O2112.9 (2)
C18—C13—C14—C1540.8 (2)C16—C17—C28—O356.0 (2)
N2—C13—C14—C875.39 (17)C18—C17—C28—O3175.59 (15)
C18—C13—C14—C8158.86 (13)C22—C17—C28—O365.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O20.982.403.029 (2)121
C15—H15B···O2i0.972.573.508 (3)163
C31—H31B···O1ii0.962.433.357 (3)163
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC31H48N2O3
Mr496.71
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.8549 (10), 11.711 (2), 17.356 (3)
β (°) 91.607 (13)
V3)1392.7 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.45 × 0.20 × 0.12
Data collection
DiffractometerKuma Diffraction KM-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.830, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
5219, 5045, 4815
Rint0.038
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.07
No. of reflections5045
No. of parameters337
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18
Absolute structureFlack (1983), 2248 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: KM-4 Software (Kuma Diffraction, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.972.573.508 (3)163
C31—H31B···O1ii0.962.433.357 (3)163
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBednarczyk-Cwynar, B. (2006). PhD thesis, Poznan University of Medical Sciences, Poznań, Poland.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFroelich, A. & Gzella, A. K. (2010). Acta Cryst. E66, o2790.  CrossRef IUCr Journals Google Scholar
First citationKuma Diffraction (1996). KM-4 Software. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds