metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m160-m161

4-[(4′-Chloro­methyl-[1,1′-biphen­yl]-4-yl)meth­yl]bis­­(di­methyl­glyoximato-κ2N,N′)(pyridine-κN)cobalt(III)

aDQIAQF/INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, p. 3, EHA1428 Buenos Aires, Argentina, and bFaculty of Science and Technology, Purbanchal University, Biratnagar, Nepal
*Correspondence e-mail: skumarchem01@gmail.com

(Received 10 December 2011; accepted 10 January 2012; online 14 January 2012)

The title compound, [Co(C14H14Cl)(C4H6N2O2)2(C5H5N)], is a model compound for the more complex cobalamines like vitamins B12. The CoIII atom is coordinated by a (4′-chloro­methyl-[1,1′-biphen­yl]-4-yl)methyl group, an N-bonded pyridine and two N,N′-bidentate dimethyl­glyoximate ligands in a distorted octa­hedral geometry. The glyoximate ligands exhibit intra­molecular O—H⋯O hydrogen bonds, which is very common in cobaloxime derivatives.

Related literature

For general background, see: Bresciani-Pahor et al. (1985[Bresciani-Pahor, N., Forcolin, M., Marzilli, L. G., Randaccio, L., Summers, M. F. & Toscano, P. J. (1985). Coord. Chem. Rev. 63, 1-125.]); Revathi et al. (2009[Revathi, C., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m795-m796.]); Brown (2006[Brown, K. L. (2006). Dalton Trans. pp. 1123-1133.]); Randaccio (1999[Randaccio, L. (1999). Comments Inorg. Chem. 21, 327-376.]); For structure–property relationships, see: Gupta et al. (2004[Gupta, B. D., Vijaikanth, V. & Singh, V. (2004). Organometallics, 23, 2069-2079.]); Dutta et al. (2009[Dutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485-3491.]). For a related structure, see: Kumar & Gupta (2011[Kumar, S. & Gupta, B. D. (2011). Inorg. Chem. 50, 9207-9209.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H14Cl)(C4H6N2O2)2(C5H5N)]

  • Mr = 583.95

  • Triclinic, [P \overline 1]

  • a = 9.1208 (15) Å

  • b = 11.3999 (19) Å

  • c = 13.661 (2) Å

  • α = 72.869 (3)°

  • β = 77.504 (3)°

  • γ = 87.276 (3)°

  • V = 1325.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS, Göttingen University, Göttingen, Germany.]) Tmin = 0.786, Tmax = 0.821

  • 7047 measured reflections

  • 4789 independent reflections

  • 3996 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.04

  • 4789 reflections

  • 349 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 1.875 (2)
Co1—N2 1.877 (2)
Co1—N3 1.879 (2)
Co1—N4 1.875 (2)
Co1—N5 2.055 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 0.84 1.67 2.479 (3) 161
O3—H3⋯O1 0.84 1.67 2.478 (3) 160

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The chemistry and molecular structure of bis(dimethylglyoximato)cobalt(III) complexes, trivially known as cobaloximes (Bresciani-Pahor et al., 1985), have been of great interest to chemists for the past four decades for two reasons. First, the coordination chemistry of these complexes is far-reaching, with almost unlimited possibilities for substituents in the axial position and variation in the equatorial ligands (Brown, 2006; Randaccio 1999). Second, many organometallic cobaloxime derivatives have been used as model compounds for the study of vitamin B12 coenzyme. Cobaloximes have played its role in helping to understand the reactivity of the cobalt-carbon bond (Gupta et al.,2004; Dutta et al., 2009). The inherently weak Co—C bond in the organocobaloximes undergoes homolytic cleavage with visible light, similar to the activation of vitamin B12 by apoenzyme and have been utilized in organic synthesis, catalysis and in polymer chemistry. Most of the recent studies on cobaloximes have been focused on their structure-property relationships (Gupta et al., 2004). Herein, we have reported the synthesis and structure of a new cobaloxime.

The crystal structure of the title compound is shown in Figure 1. The coordination of cobalt(III) ion is slightly distorted octahedral (Revathi et al., 2009) with the aryl group, the 4-((4'-(chloromethyl)-[1,1'-biphenyl]-4-yl)methyl group, a pyridine ligand and two N,N-bidentate dimethylglyoximate ligands. The Co—N(dmg) bond lengths range from 1.873 (2) to 1.880 (2) Å. The bite angles N3—Co1—N4 and N1—Co1—N2 of the ligand are 81.45 (11)° and 81.44 (11)°, respectively. The coordinated 4-((4'-(chloromethyl)-[1,1'-biphenyl]-4-yl)methyl group and the pyridine ring nitrogen are coordinated axially in trans position with the angle C14—Co1—N5 = 177.88 (9)°. The important bond lengths and bond angles are given in Table 1, and intramolecular hydrogen bonding parameters are given in Table 2. The two glyoximate moieties are linked together by strong intramolecular O–H···O hydrogen bonding (Fig. 2). Additionally, the packing (Fig. 2) shows molecules bonded through C-H···π interactions within 3.4824 (4) - 3.5907 (5) Å.

Related literature top

For general background, see: Bresciani-Pahor et al. (1985); Revathi et al. (2009); Brown (2006); Randaccio (1999); For structure–property relationships, see: Gupta et al. (2004); Dutta et al. (2009). For a related structure, see: Kumar & Gupta (2011).

Experimental top

A solution of ClCo(dmgH)2py (1 mmol) in 10 ml of methanol was purged thoroughly with N2 for 20 min and was cooled to 0°C with stirring. The solution turned deep blue after the addition of a few drops of aqueous NaOH followed by sodium borohydride (1.5 mmol in 0.5 ml of water). The colour of the solution turned orange-red on addition of 4,4'-bis(chloromethyl)-1,1'-biphenyl (1 mmol). The reaction was stirred 1 h at 0°C then poured into 20 ml chilled water. The resulting orange-red precipitate was filtered, washed with water, and dried. The obtained orange coloured compound was recrystallized from dichloromethane and methanol. After five days, orange coloured crystals were obtained, suitable for single-crystal data collection.

Refinement top

All H atoms were derived from difference Fourier maps and then refined at idealized positions riding with C—H 0.95 – 0.99 Å, O–H 0.84 Å and Uiso = 1.2 Ueq(C) or 1.5 (C-methyl and O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing. Dotted lines represent intramolecular O—H···O and intermolecular C—H···π interactions.
4-[(4'-Chloromethyl-[1,1'-biphenyl]-4-yl)methyl]bis(dimethylglyoximato- κ2N,N')(pyridine-κN)cobalt(III) top
Crystal data top
[Co(C14H14Cl)(C4H6N2O2)2(C5H5N)]Z = 2
Mr = 583.95F(000) = 608
Triclinic, P1Dx = 1.464 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1208 (15) ÅCell parameters from 2484 reflections
b = 11.3999 (19) Åθ = 2.8–27.6°
c = 13.661 (2) ŵ = 0.79 mm1
α = 72.869 (3)°T = 100 K
β = 77.504 (3)°Prism, orange
γ = 87.276 (3)°0.32 × 0.28 × 0.26 mm
V = 1325.1 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4789 independent reflections
Radiation source: fine-focus sealed tube3996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.786, Tmax = 0.821k = 1313
7047 measured reflectionsl = 916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.7675P]
where P = (Fo2 + 2Fc2)/3
4789 reflections(Δ/σ)max = 0.014
349 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Co(C14H14Cl)(C4H6N2O2)2(C5H5N)]γ = 87.276 (3)°
Mr = 583.95V = 1325.1 (4) Å3
Triclinic, P1Z = 2
a = 9.1208 (15) ÅMo Kα radiation
b = 11.3999 (19) ŵ = 0.79 mm1
c = 13.661 (2) ÅT = 100 K
α = 72.869 (3)°0.32 × 0.28 × 0.26 mm
β = 77.504 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4789 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3996 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.821Rint = 0.022
7047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.65 e Å3
4789 reflectionsΔρmin = 0.43 e Å3
349 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5467 (3)0.4296 (3)0.8689 (2)0.0244 (6)
C20.4200 (3)0.5114 (2)0.8484 (2)0.0236 (6)
C30.6928 (3)0.4741 (3)0.8776 (2)0.0328 (7)
H3A0.76130.40510.89070.049*
H3B0.67630.51040.93580.049*
H3C0.73690.53620.81220.049*
C40.4242 (4)0.6451 (3)0.8370 (3)0.0353 (7)
H4A0.32450.67930.83220.053*
H4B0.49720.68640.77330.053*
H4C0.45370.65780.89800.053*
C50.2347 (3)0.0577 (3)0.8636 (2)0.0267 (6)
C60.1069 (3)0.1387 (3)0.8459 (2)0.0259 (6)
C70.2347 (4)0.0776 (3)0.8776 (3)0.0405 (8)
H7A0.31590.09660.82490.061*
H7B0.13810.10300.86910.061*
H7C0.25000.12160.94780.061*
C80.0405 (4)0.0952 (3)0.8371 (3)0.0361 (7)
H8A0.11230.16230.83300.054*
H8B0.07900.02610.89870.054*
H8C0.02680.06870.77370.054*
C90.1205 (3)0.2947 (2)1.0542 (2)0.0236 (6)
H90.06800.35001.00740.028*
C100.0644 (3)0.2700 (2)1.1611 (2)0.0252 (6)
H100.02470.30781.18690.030*
C110.1406 (3)0.1892 (2)1.2298 (2)0.0261 (6)
H110.10550.17131.30350.031*
C120.2681 (3)0.1354 (2)1.1890 (2)0.0249 (6)
H120.32190.07901.23420.030*
C130.3172 (3)0.1641 (2)1.0815 (2)0.0216 (6)
H130.40510.12601.05420.026*
C140.4029 (3)0.3241 (3)0.6945 (2)0.0280 (6)
H14A0.42870.24610.67730.034*
H14B0.31950.36070.66030.034*
C150.5346 (4)0.4084 (3)0.6493 (2)0.0300 (7)
C160.5165 (3)0.5349 (3)0.6105 (2)0.0301 (7)
H160.41860.56560.60660.036*
C170.6360 (3)0.6165 (3)0.5778 (2)0.0311 (7)
H170.61880.70190.55260.037*
C180.7833 (3)0.5753 (3)0.5810 (2)0.0297 (7)
C190.8023 (4)0.4479 (3)0.6162 (2)0.0322 (7)
H190.90040.41660.61780.039*
C200.6826 (4)0.3678 (3)0.6480 (2)0.0313 (7)
H200.70000.28210.67000.038*
C210.9099 (3)0.6632 (3)0.5546 (2)0.0299 (7)
C220.9150 (4)0.7773 (3)0.4799 (2)0.0335 (7)
H220.83700.79890.44200.040*
C231.0328 (4)0.8605 (3)0.4598 (2)0.0372 (8)
H231.03310.93840.40940.045*
C241.1498 (4)0.8307 (3)0.5128 (2)0.0361 (7)
C251.1457 (3)0.7166 (3)0.5874 (2)0.0346 (7)
H251.22440.69460.62460.041*
C261.0279 (3)0.6349 (3)0.6076 (2)0.0331 (7)
H261.02710.55750.65890.040*
C271.2793 (4)0.9190 (4)0.4875 (3)0.0467 (9)
H27A1.25760.99710.43760.056*
H27B1.37070.88460.45280.056*
N10.1383 (3)0.2514 (2)0.83606 (18)0.0246 (5)
N20.3515 (3)0.1170 (2)0.86675 (18)0.0229 (5)
N30.3069 (3)0.4537 (2)0.83950 (17)0.0223 (5)
N40.5175 (2)0.3177 (2)0.87419 (17)0.0216 (5)
N50.2458 (2)0.24374 (19)1.01403 (18)0.0204 (5)
O10.1808 (2)0.51432 (17)0.81945 (16)0.0291 (5)
O20.6233 (2)0.23031 (18)0.89279 (16)0.0277 (5)
H20.59290.16410.88820.042*
O30.0329 (2)0.33869 (18)0.81727 (17)0.0313 (5)
H30.06960.40770.80990.047*
O40.4805 (2)0.05861 (17)0.87842 (16)0.0289 (5)
Cl11.31444 (11)0.94962 (9)0.60281 (7)0.0528 (3)
Co10.32783 (4)0.28473 (3)0.85516 (3)0.02023 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0278 (15)0.0268 (15)0.0186 (13)0.0066 (12)0.0018 (11)0.0077 (11)
C20.0338 (16)0.0185 (14)0.0185 (13)0.0031 (12)0.0044 (12)0.0056 (11)
C30.0286 (16)0.0409 (19)0.0311 (16)0.0104 (14)0.0057 (13)0.0129 (14)
C40.050 (2)0.0193 (15)0.0385 (18)0.0059 (14)0.0092 (15)0.0105 (13)
C50.0354 (17)0.0206 (14)0.0276 (15)0.0019 (12)0.0099 (13)0.0099 (12)
C60.0293 (15)0.0261 (15)0.0269 (15)0.0042 (12)0.0109 (12)0.0104 (12)
C70.061 (2)0.0227 (16)0.045 (2)0.0017 (15)0.0239 (17)0.0126 (14)
C80.0325 (17)0.0388 (18)0.0441 (19)0.0069 (14)0.0158 (15)0.0160 (15)
C90.0239 (14)0.0170 (13)0.0333 (16)0.0013 (11)0.0123 (12)0.0082 (12)
C100.0214 (14)0.0198 (14)0.0369 (16)0.0003 (11)0.0059 (12)0.0122 (12)
C110.0282 (15)0.0213 (14)0.0283 (15)0.0026 (12)0.0049 (12)0.0066 (12)
C120.0292 (15)0.0180 (14)0.0286 (15)0.0005 (11)0.0118 (12)0.0041 (11)
C130.0201 (14)0.0161 (13)0.0301 (15)0.0026 (10)0.0079 (11)0.0074 (11)
C140.0381 (17)0.0275 (15)0.0229 (14)0.0062 (13)0.0121 (13)0.0110 (12)
C150.0409 (18)0.0292 (16)0.0218 (14)0.0044 (13)0.0090 (13)0.0094 (12)
C160.0333 (17)0.0332 (17)0.0239 (15)0.0115 (13)0.0091 (13)0.0082 (13)
C170.0385 (18)0.0296 (16)0.0238 (15)0.0063 (13)0.0092 (13)0.0046 (13)
C180.0379 (17)0.0299 (16)0.0197 (14)0.0083 (13)0.0060 (12)0.0061 (12)
C190.0357 (17)0.0350 (17)0.0246 (15)0.0092 (14)0.0042 (13)0.0097 (13)
C200.0412 (18)0.0260 (16)0.0251 (15)0.0071 (13)0.0039 (13)0.0083 (12)
C210.0308 (16)0.0323 (16)0.0246 (15)0.0082 (13)0.0032 (12)0.0087 (13)
C220.0360 (17)0.0364 (18)0.0255 (15)0.0075 (14)0.0072 (13)0.0059 (13)
C230.0402 (19)0.0395 (19)0.0266 (16)0.0009 (15)0.0056 (14)0.0029 (14)
C240.0327 (17)0.046 (2)0.0271 (16)0.0041 (14)0.0009 (13)0.0116 (14)
C250.0304 (17)0.0438 (19)0.0275 (16)0.0110 (14)0.0037 (13)0.0107 (14)
C260.0346 (17)0.0366 (18)0.0248 (15)0.0117 (14)0.0027 (13)0.0080 (13)
C270.042 (2)0.060 (2)0.0338 (18)0.0021 (17)0.0076 (15)0.0055 (17)
N10.0252 (12)0.0218 (12)0.0305 (13)0.0056 (10)0.0133 (10)0.0086 (10)
N20.0261 (12)0.0210 (12)0.0255 (12)0.0051 (10)0.0117 (10)0.0091 (10)
N30.0279 (12)0.0188 (12)0.0216 (12)0.0014 (9)0.0089 (10)0.0057 (9)
N40.0217 (12)0.0220 (12)0.0214 (12)0.0012 (9)0.0070 (9)0.0054 (9)
N50.0186 (11)0.0154 (11)0.0287 (12)0.0000 (9)0.0082 (9)0.0062 (9)
O10.0333 (11)0.0208 (10)0.0357 (11)0.0122 (8)0.0167 (9)0.0071 (9)
O20.0221 (10)0.0277 (11)0.0356 (11)0.0059 (8)0.0124 (9)0.0091 (9)
O30.0299 (11)0.0264 (11)0.0437 (13)0.0090 (9)0.0201 (10)0.0120 (10)
O40.0310 (11)0.0223 (10)0.0386 (12)0.0131 (8)0.0161 (9)0.0121 (9)
Cl10.0548 (6)0.0574 (6)0.0447 (5)0.0059 (5)0.0189 (4)0.0054 (4)
Co10.0228 (2)0.0156 (2)0.0257 (2)0.00326 (15)0.01128 (16)0.00724 (15)
Geometric parameters (Å, º) top
C1—N41.294 (4)C15—C161.398 (4)
C1—C21.472 (4)C15—C201.404 (4)
C1—C31.489 (4)C16—C171.376 (4)
C2—N31.295 (4)C16—H160.9500
C2—C41.487 (4)C17—C181.408 (4)
C3—H3A0.9800C17—H170.9500
C3—H3B0.9800C18—C191.404 (4)
C3—H3C0.9800C18—C211.477 (4)
C4—H4A0.9800C19—C201.367 (4)
C4—H4B0.9800C19—H190.9500
C4—H4C0.9800C20—H200.9500
C5—N21.304 (4)C21—C221.393 (4)
C5—C61.469 (4)C21—C261.398 (4)
C5—C71.497 (4)C22—C231.395 (5)
C6—N11.291 (4)C22—H220.9500
C6—C81.495 (4)C23—C241.390 (4)
C7—H7A0.9800C23—H230.9500
C7—H7B0.9800C24—C251.392 (4)
C7—H7C0.9800C24—C271.503 (5)
C8—H8A0.9800C25—C261.383 (5)
C8—H8B0.9800C25—H250.9500
C8—H8C0.9800C26—H260.9500
C9—N51.341 (4)C27—Cl11.805 (4)
C9—C101.387 (4)C27—H27A0.9900
C9—H90.9500C27—H27B0.9900
C10—C111.387 (4)N1—O31.359 (3)
C10—H100.9500N1—Co11.875 (2)
C11—C121.376 (4)N2—O41.340 (3)
C11—H110.9500N2—Co11.877 (2)
C12—C131.382 (4)N3—O11.351 (3)
C12—H120.9500N3—Co11.879 (2)
C13—N51.345 (3)N4—O21.362 (3)
C13—H130.9500N4—Co11.875 (2)
C14—C151.479 (4)N5—Co12.055 (2)
C14—Co12.071 (3)O2—H20.8400
C14—H14A0.9900O3—H30.8400
C14—H14B0.9900
N4—C1—C2112.3 (2)C19—C18—C17116.9 (3)
N4—C1—C3124.9 (3)C19—C18—C21122.0 (3)
C2—C1—C3122.8 (3)C17—C18—C21121.0 (3)
N3—C2—C1112.0 (2)C20—C19—C18121.5 (3)
N3—C2—C4124.5 (3)C20—C19—H19119.3
C1—C2—C4123.5 (3)C18—C19—H19119.3
C1—C3—H3A109.5C19—C20—C15122.0 (3)
C1—C3—H3B109.5C19—C20—H20119.0
H3A—C3—H3B109.5C15—C20—H20119.0
C1—C3—H3C109.5C22—C21—C26117.5 (3)
H3A—C3—H3C109.5C22—C21—C18122.4 (3)
H3B—C3—H3C109.5C26—C21—C18120.1 (3)
C2—C4—H4A109.5C21—C22—C23121.1 (3)
C2—C4—H4B109.5C21—C22—H22119.5
H4A—C4—H4B109.5C23—C22—H22119.5
C2—C4—H4C109.5C24—C23—C22120.7 (3)
H4A—C4—H4C109.5C24—C23—H23119.6
H4B—C4—H4C109.5C22—C23—H23119.6
N2—C5—C6112.2 (2)C23—C24—C25118.5 (3)
N2—C5—C7122.5 (3)C23—C24—C27120.3 (3)
C6—C5—C7125.3 (3)C25—C24—C27121.2 (3)
N1—C6—C5112.2 (2)C26—C25—C24120.5 (3)
N1—C6—C8124.3 (3)C26—C25—H25119.8
C5—C6—C8123.5 (3)C24—C25—H25119.8
C5—C7—H7A109.5C25—C26—C21121.7 (3)
C5—C7—H7B109.5C25—C26—H26119.2
H7A—C7—H7B109.5C21—C26—H26119.2
C5—C7—H7C109.5C24—C27—Cl1112.3 (2)
H7A—C7—H7C109.5C24—C27—H27A109.1
H7B—C7—H7C109.5Cl1—C27—H27A109.1
C6—C8—H8A109.5C24—C27—H27B109.1
C6—C8—H8B109.5Cl1—C27—H27B109.1
H8A—C8—H8B109.5H27A—C27—H27B107.9
C6—C8—H8C109.5C6—N1—O3119.7 (2)
H8A—C8—H8C109.5C6—N1—Co1117.25 (19)
H8B—C8—H8C109.5O3—N1—Co1123.03 (17)
N5—C9—C10122.7 (2)C5—N2—O4120.5 (2)
N5—C9—H9118.6C5—N2—Co1116.67 (19)
C10—C9—H9118.6O4—N2—Co1122.87 (17)
C11—C10—C9118.9 (3)C2—N3—O1120.4 (2)
C11—C10—H10120.5C2—N3—Co1117.09 (19)
C9—C10—H10120.5O1—N3—Co1122.48 (17)
C12—C11—C10118.6 (3)C1—N4—O2119.6 (2)
C12—C11—H11120.7C1—N4—Co1117.2 (2)
C10—C11—H11120.7O2—N4—Co1123.19 (17)
C11—C12—C13119.4 (3)C9—N5—C13117.7 (2)
C11—C12—H12120.3C9—N5—Co1121.72 (18)
C13—C12—H12120.3C13—N5—Co1120.57 (19)
N5—C13—C12122.7 (3)N4—O2—H2109.5
N5—C13—H13118.6N1—O3—H3109.5
C12—C13—H13118.6N4—Co1—N1179.86 (10)
C15—C14—Co1115.2 (2)N4—Co1—N298.40 (10)
C15—C14—H14A108.5N1—Co1—N281.46 (10)
Co1—C14—H14A108.5N4—Co1—N381.41 (10)
C15—C14—H14B108.5N1—Co1—N398.72 (10)
Co1—C14—H14B108.5N2—Co1—N3178.36 (10)
H14A—C14—H14B107.5N4—Co1—N589.74 (9)
C16—C15—C20116.5 (3)N1—Co1—N590.30 (10)
C16—C15—C14120.9 (3)N2—Co1—N590.44 (9)
C20—C15—C14122.6 (3)N3—Co1—N591.19 (9)
C17—C16—C15122.1 (3)N4—Co1—C1492.37 (11)
C17—C16—H16119.0N1—Co1—C1487.59 (11)
C15—C16—H16119.0N2—Co1—C1489.08 (11)
C16—C17—C18121.0 (3)N3—Co1—C1489.30 (11)
C16—C17—H17119.5N5—Co1—C14177.89 (10)
C18—C17—H17119.5
N4—C1—C2—N30.4 (3)C12—C13—N5—C91.2 (4)
C3—C1—C2—N3177.2 (2)C12—C13—N5—Co1178.7 (2)
N4—C1—C2—C4179.1 (2)C1—N4—Co1—N1162 (100)
C3—C1—C2—C41.4 (4)O2—N4—Co1—N117 (50)
N2—C5—C6—N10.8 (4)C1—N4—Co1—N2178.4 (2)
C7—C5—C6—N1179.7 (3)O2—N4—Co1—N21.4 (2)
N2—C5—C6—C8178.9 (3)C1—N4—Co1—N30.1 (2)
C7—C5—C6—C81.5 (5)O2—N4—Co1—N3179.8 (2)
N5—C9—C10—C110.1 (4)C1—N4—Co1—N591.2 (2)
C9—C10—C11—C120.8 (4)O2—N4—Co1—N589.0 (2)
C10—C11—C12—C130.7 (4)C1—N4—Co1—C1489.0 (2)
C11—C12—C13—N50.4 (4)O2—N4—Co1—C1490.9 (2)
Co1—C14—C15—C1692.7 (3)C6—N1—Co1—N421 (50)
Co1—C14—C15—C2083.7 (3)O3—N1—Co1—N4162 (100)
C20—C15—C16—C173.3 (4)C6—N1—Co1—N24.5 (2)
C14—C15—C16—C17173.3 (3)O3—N1—Co1—N2178.4 (2)
C15—C16—C17—C180.7 (5)C6—N1—Co1—N3177.1 (2)
C16—C17—C18—C191.7 (4)O3—N1—Co1—N30.1 (2)
C16—C17—C18—C21174.7 (3)C6—N1—Co1—N585.9 (2)
C17—C18—C19—C201.5 (4)O3—N1—Co1—N591.2 (2)
C21—C18—C19—C20174.9 (3)C6—N1—Co1—C1493.9 (2)
C18—C19—C20—C151.2 (5)O3—N1—Co1—C1489.0 (2)
C16—C15—C20—C193.5 (4)C5—N2—Co1—N4176.0 (2)
C14—C15—C20—C19173.0 (3)O4—N2—Co1—N43.5 (2)
C19—C18—C21—C22150.8 (3)C5—N2—Co1—N14.0 (2)
C17—C18—C21—C2233.0 (4)O4—N2—Co1—N1176.4 (2)
C19—C18—C21—C2631.4 (4)C5—N2—Co1—N3101 (3)
C17—C18—C21—C26144.9 (3)O4—N2—Co1—N380 (3)
C26—C21—C22—C230.7 (5)C5—N2—Co1—N586.2 (2)
C18—C21—C22—C23177.2 (3)O4—N2—Co1—N593.3 (2)
C21—C22—C23—C241.1 (5)C5—N2—Co1—C1491.7 (2)
C22—C23—C24—C250.8 (5)O4—N2—Co1—C1488.7 (2)
C22—C23—C24—C27177.6 (3)C2—N3—Co1—N40.3 (2)
C23—C24—C25—C260.2 (5)O1—N3—Co1—N4179.4 (2)
C27—C24—C25—C26178.1 (3)C2—N3—Co1—N1179.7 (2)
C24—C25—C26—C210.1 (5)O1—N3—Co1—N10.5 (2)
C22—C21—C26—C250.1 (4)C2—N3—Co1—N284 (3)
C18—C21—C26—C25177.9 (3)O1—N3—Co1—N296 (3)
C23—C24—C27—Cl1127.7 (3)C2—N3—Co1—N589.2 (2)
C25—C24—C27—Cl153.9 (4)O1—N3—Co1—N591.0 (2)
C5—C6—N1—O3178.8 (2)C2—N3—Co1—C1492.8 (2)
C8—C6—N1—O30.6 (4)O1—N3—Co1—C1486.9 (2)
C5—C6—N1—Co14.1 (3)C9—N5—Co1—N4129.1 (2)
C8—C6—N1—Co1177.8 (2)C13—N5—Co1—N450.9 (2)
C6—C5—N2—O4177.5 (2)C9—N5—Co1—N151.0 (2)
C7—C5—N2—O42.9 (4)C13—N5—Co1—N1129.0 (2)
C6—C5—N2—Co12.9 (3)C9—N5—Co1—N2132.5 (2)
C7—C5—N2—Co1176.7 (2)C13—N5—Co1—N247.5 (2)
C1—C2—N3—O1179.3 (2)C9—N5—Co1—N347.7 (2)
C4—C2—N3—O10.6 (4)C13—N5—Co1—N3132.3 (2)
C1—C2—N3—Co10.5 (3)C9—N5—Co1—C1456 (3)
C4—C2—N3—Co1179.1 (2)C13—N5—Co1—C14124 (3)
C2—C1—N4—O2180.0 (2)C15—C14—Co1—N425.2 (2)
C3—C1—N4—O22.4 (4)C15—C14—Co1—N1155.0 (2)
C2—C1—N4—Co10.2 (3)C15—C14—Co1—N2123.5 (2)
C3—C1—N4—Co1177.4 (2)C15—C14—Co1—N356.2 (2)
C10—C9—N5—C131.1 (4)C15—C14—Co1—N5160 (3)
C10—C9—N5—Co1178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.841.672.479 (3)161
O3—H3···O10.841.672.478 (3)160

Experimental details

Crystal data
Chemical formula[Co(C14H14Cl)(C4H6N2O2)2(C5H5N)]
Mr583.95
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1208 (15), 11.3999 (19), 13.661 (2)
α, β, γ (°)72.869 (3), 77.504 (3), 87.276 (3)
V3)1325.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.786, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
7047, 4789, 3996
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.04
No. of reflections4789
No. of parameters349
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.43

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
N1—Co11.875 (2)N4—Co11.875 (2)
N2—Co11.877 (2)N5—Co12.055 (2)
N3—Co11.879 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.841.672.479 (3)161.1
O3—H3···O10.841.672.478 (3)160.4
 

Footnotes

This article is dedicated to late Professor B. D. Gupta.

Acknowledgements

The authors are thankful to the IIT Kanpur, India, for the data collection. SK is thankful to TWAS and CONICET, Argentina.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBresciani-Pahor, N., Forcolin, M., Marzilli, L. G., Randaccio, L., Summers, M. F. & Toscano, P. J. (1985). Coord. Chem. Rev. 63, 1–125.  CrossRef CAS Web of Science Google Scholar
First citationBrown, K. L. (2006). Dalton Trans. pp. 1123–1133.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485–3491.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, B. D., Vijaikanth, V. & Singh, V. (2004). Organometallics, 23, 2069–2079.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, S. & Gupta, B. D. (2011). Inorg. Chem. 50, 9207–9209.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRandaccio, L. (1999). Comments Inorg. Chem. 21, 327–376.  Web of Science CrossRef CAS Google Scholar
First citationRevathi, C., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m795–m796.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS, Göttingen University, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m160-m161
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds