organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[(carbamoyl­amino)­imino]-2-(3-{1-[(carbamoyl­amino)­imino]-2-meth­­oxy-2-oxoeth­yl}phen­yl)acetate ethanol monosolvate monohydrate

aTashkent Chemical Technology Institute, A. Navoyi 11, Tashkent, Uzbekistan, bUzbekistan Scientific Research Pharmacological Chemistry Institute (named after A. Sultonov), Durmon Yuli str. 40, Tashkent, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Street 83, Tashkent, 100125 Uzbekistan
*Correspondence e-mail: x-ray.uz@mail.ru

(Received 2 November 2011; accepted 11 January 2012; online 21 January 2012)

In the title compound, C14H16N6O6·C2H6O·H2O, both substit­uents of the benzene ring are approximately planar with maximum deviations from the mean plane of 0.0561 (12) (an imine N atom) and 0.1419 (11) Å (a meth­oxy O atom). The substituents are tilted out of the plane of the benzene ring by 64.48 (4) and 70.08 (5)°, respectively. In the crystal, mol­ecules form centrosymmetric dimers associated via pairs of N—H⋯O hydrogen bonds. The dimers are linked via the water and ethanol mol­ecules, forming two-dimensional hydrogen-bond networks lying parallel to (100).

Related literature

For details of the synthesis of 1,4-benzodiketodicarb­oxy­lic acid and its derivatives, see: Ismatov et al. (1991[Ismatov, D. N., Azizov, U. M., Nurullaeva, M. K. & Iskandarov, S. I. (1991). Pharm. Chem. J., 25, 498-502.]). For the synthesis and biological activity of 1,3-benzodiketodicarb­oxy­lic acid and its derivatives, see: Ismatov et al. (1998[Ismatov, D. N., Leonteva, L. I., Azizov, U. M., Karshiev, D. N. & Zakirov, U. B. (1998). Pharm. Chem. J., 32, 593-594.], 2001[Ismatov, D. N., Azizov, U. M., Leonteva, L. I., Zakirov, A. U. & Yuldashev, S. Z. (2001). Pharm. Chem. J. 35, 418-420.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N6O6·C2H6O·H2O

  • Mr = 428.41

  • Monoclinic, P 21 /c

  • a = 7.5810 (2) Å

  • b = 12.1216 (3) Å

  • c = 23.0379 (7) Å

  • β = 97.254 (3)°

  • V = 2100.11 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.94 mm−1

  • T = 294 K

  • 0.41 × 0.32 × 0.26 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.700, Tmax = 1.000

  • 15863 measured reflections

  • 4317 independent reflections

  • 2927 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 0.98

  • 4317 reflections

  • 298 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O6 0.85 2.05 2.879 (3) 166
O1W—H1WB⋯O5i 0.85 2.16 2.941 (3) 152
N3—H3A⋯O7 0.86 (4) 2.13 (4) 2.980 (2) 169 (3)
N3—H3B⋯O5ii 0.85 (3) 2.61 (2) 3.082 (2) 116.7 (18)
N5—H5A⋯O3iii 0.86 2.19 3.010 (2) 160
N6—H6A⋯O1Wiv 0.84 (3) 2.34 (3) 3.137 (3) 158 (3)
N6—H6B⋯O7v 0.90 (3) 1.99 (3) 2.871 (3) 166 (2)
O7—H7⋯O2 0.88 (3) 1.96 (3) 2.801 (2) 158 (3)
O7—H7⋯N1 0.88 (3) 2.52 (3) 3.0677 (19) 121 (2)
C4—H4⋯O6vi 0.93 2.57 3.493 (2) 173
C13—H13C⋯N6vii 0.96 2.62 3.405 (3) 139
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x+1, y, z; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has been reported previously that arylketodicarbonicacid derivatives possess antiinflammatory activity (Ismatov et al., 1991, Ismatov et al., 1998, Ismatov et al., 2001). We report herein the X-ray crystallographic study of a disemicarbazonodimethylether-1,3-benzenediketodicarbonic acid monohydrate ethanol solvate.

The asymmetric unit of the title compound, C14H16N6O6.C2H6O.H2O, contains a disemicarbazonodimethylether-1,3-benzenediketodicarbonic acid (DBA), an ethanol and a water molecule as shown in Fig. 1. In the DBA molecule the planes of the substituent fragments (C1/C7/C8/N1/N2/O1/O2 and C3/C11/C12/N4/N5/O4/O5) are tilted out of the mean plane of the benzene ring by 64.48 (4)° and 70.08 (5)°, respectively.

In the crystal structure (Fig. 2), DBA molecules form centrosymmetric pair associates via N2—H···O3 and N5—H···O3 H-bonds and the associates are linked via H-bonds by water (O1W—H1···O5, O1W—H2···O6, N6—H···O1W) and ethanol (N6—H···O7, N3—H3···O7,O7—H7···O2) molecules forming two-dimensional networks parallel to the (100) plane (Table 1).

Related literature top

For details of the synthesis of 1,4-benzodiketodicarboxylic acid and its derivatives, see: Ismatov et al. (1991). For the synthesis and biological activity of 1,3-benzodiketodicarboxylic acid and its derivatives, see: Ismatov et al. (1998, 2001).

Experimental top

In a round bottom flask, dimethylether-1,3-benzodiketodicarboxylic acid (0.02 mol, 0.51 g) was dissolved in 5 ml methanol. Drops of semicarbazide chloride (0.04 mol, 0.44 g) dissolved in ethanol (5 ml) were then added. The reaction mixture was refluxed for 30 min. The precipitate (0.44 g )formed after 24 h was filtered. The precipitate was then dissolved in ethanol at room temperature. After few days, colorless crystals (m.p. 120–121°C) were formed by slow evaporation.

Refinement top

C-bound H atoms were placed in calculated positions with C—H 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 hydrogens and were refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. NH H atoms were placed in calculated positions with N—H 0.86 Å and refined in riding mode with Uiso(H) = 1.2 Ueq(N). The H-atoms bonded to the O atom of the water molecule were found from difference Fourier map and their coordinates were refined independently with Uiso(H) = 1.5 Ueq(O). The H-atom bonded to the O atom of the ethanol molecule and the NH2 H atoms were refined freely.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for title compound.
Methyl 2-[(carbamoylamino)imino]-2-(3-{1-[(carbamoylamino)imino]- 2-methoxy-2-oxoethyl}phenyl)acetate ethanol monosolvate monohydrate top
Crystal data top
C14H16N6O6·C2H6O·H2OZ = 4
Mr = 428.41F(000) = 904
Monoclinic, P21/cDx = 1.355 Mg m3
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 7.5810 (2) Åθ = 3.6–75.7°
b = 12.1216 (3) ŵ = 0.94 mm1
c = 23.0379 (7) ÅT = 294 K
β = 97.254 (3)°Block, colourless
V = 2100.11 (10) Å30.41 × 0.32 × 0.26 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4317 independent reflections
Radiation source: fine-focus sealed tube2927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.2576 pixels mm-1θmax = 75.9°, θmin = 3.9°
ω scansh = 89
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
k = 1415
Tmin = 0.700, Tmax = 1.000l = 2728
15863 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0775P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.002
4317 reflectionsΔρmax = 0.27 e Å3
298 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Crystal data top
C14H16N6O6·C2H6O·H2OV = 2100.11 (10) Å3
Mr = 428.41Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.5810 (2) ŵ = 0.94 mm1
b = 12.1216 (3) ÅT = 294 K
c = 23.0379 (7) Å0.41 × 0.32 × 0.26 mm
β = 97.254 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4317 independent reflections
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
2927 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 1.000Rint = 0.035
15863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.27 e Å3
4317 reflectionsΔρmin = 0.18 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2929 (2)0.25039 (12)0.51014 (7)0.0377 (4)
C20.3041 (2)0.27386 (13)0.56962 (7)0.0400 (4)
H20.22190.32120.58310.048*
C30.4375 (2)0.22701 (13)0.60902 (7)0.0427 (4)
C40.5626 (2)0.15889 (14)0.58852 (8)0.0501 (4)
H40.65370.12880.61450.060*
C50.5520 (2)0.13560 (14)0.52931 (9)0.0526 (4)
H50.63620.08970.51570.063*
C60.4171 (2)0.18025 (13)0.49020 (8)0.0457 (4)
H60.40960.16330.45060.055*
C70.1457 (2)0.29742 (13)0.46895 (7)0.0385 (4)
C80.1357 (2)0.41831 (13)0.45552 (7)0.0412 (4)
C90.2828 (3)0.58940 (15)0.47140 (10)0.0582 (5)
H9A0.25860.60420.43020.087*
H9B0.39870.61700.48600.087*
H9C0.19510.62510.49150.087*
C100.1273 (2)0.07098 (14)0.42197 (7)0.0455 (4)
C110.4352 (2)0.25050 (14)0.67237 (7)0.0475 (4)
C120.5777 (3)0.31779 (15)0.70685 (8)0.0553 (5)
C130.8581 (3)0.4016 (2)0.70538 (13)0.0876 (8)
H13A0.95920.39580.68430.131*
H13B0.89020.37680.74490.131*
H13C0.81990.47710.70560.131*
C140.0394 (3)0.12867 (16)0.70835 (9)0.0583 (5)
N10.01612 (18)0.24187 (11)0.44138 (6)0.0408 (3)
N20.00539 (19)0.13309 (10)0.45248 (6)0.0446 (3)
H2A0.08120.10260.47850.053*
N30.2322 (3)0.12126 (15)0.37973 (8)0.0628 (5)
N40.3108 (2)0.22112 (12)0.70208 (7)0.0528 (4)
N50.1754 (2)0.15785 (13)0.67639 (7)0.0560 (4)
H5A0.17390.13610.64080.067*
N60.0482 (3)0.17095 (18)0.76207 (9)0.0713 (5)
O10.27699 (16)0.47111 (9)0.48126 (6)0.0489 (3)
O20.01418 (18)0.46321 (10)0.42578 (6)0.0585 (4)
O30.14134 (19)0.02689 (10)0.43545 (6)0.0583 (4)
O40.7144 (2)0.33357 (12)0.67710 (7)0.0670 (4)
O50.5688 (2)0.35432 (13)0.75522 (6)0.0767 (5)
O60.0770 (2)0.06677 (13)0.68590 (7)0.0725 (4)
C150.3706 (4)0.4190 (2)0.32573 (11)0.0836 (8)
H15A0.42590.39920.28690.100*
H15B0.33660.49610.32490.100*
C160.4991 (4)0.4054 (3)0.36663 (16)0.1227 (12)
H16A0.60730.44280.35200.184*
H16B0.45230.43610.40380.184*
H16C0.52290.32830.37120.184*
O70.2166 (2)0.35452 (12)0.33981 (7)0.0649 (4)
O1W0.2726 (4)0.13725 (18)0.67387 (11)0.1195 (8)
H1WA0.20030.08370.68020.179*
H1WB0.36990.12120.68660.179*
H3A0.212 (4)0.188 (3)0.3697 (13)0.106 (10)*
H3B0.317 (3)0.084 (2)0.3617 (10)0.073 (7)*
H6A0.132 (4)0.212 (2)0.7761 (12)0.095 (10)*
H6B0.046 (4)0.158 (2)0.7812 (11)0.081 (8)*
H70.156 (4)0.376 (2)0.3730 (13)0.111 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (8)0.0285 (7)0.0444 (8)0.0087 (6)0.0032 (6)0.0021 (6)
C20.0412 (9)0.0310 (8)0.0458 (9)0.0047 (6)0.0024 (7)0.0002 (6)
C30.0459 (9)0.0318 (8)0.0466 (9)0.0088 (7)0.0094 (7)0.0010 (6)
C40.0473 (10)0.0358 (8)0.0623 (11)0.0004 (7)0.0120 (8)0.0012 (8)
C50.0463 (10)0.0410 (9)0.0688 (12)0.0020 (7)0.0005 (9)0.0042 (8)
C60.0502 (10)0.0364 (8)0.0495 (9)0.0061 (7)0.0019 (8)0.0041 (7)
C70.0408 (8)0.0352 (8)0.0385 (8)0.0059 (6)0.0007 (7)0.0027 (6)
C80.0417 (9)0.0356 (8)0.0455 (9)0.0049 (7)0.0022 (7)0.0032 (7)
C90.0573 (11)0.0344 (9)0.0817 (14)0.0099 (8)0.0041 (10)0.0042 (9)
C100.0529 (10)0.0399 (9)0.0402 (8)0.0106 (7)0.0078 (7)0.0024 (7)
C110.0530 (10)0.0392 (9)0.0459 (9)0.0043 (8)0.0110 (8)0.0042 (7)
C120.0653 (13)0.0402 (9)0.0524 (11)0.0038 (8)0.0231 (9)0.0046 (8)
C130.0760 (16)0.0672 (14)0.1084 (19)0.0257 (12)0.0323 (14)0.0023 (14)
C140.0591 (12)0.0493 (11)0.0636 (12)0.0003 (9)0.0030 (10)0.0152 (9)
N10.0460 (8)0.0343 (7)0.0397 (7)0.0063 (6)0.0043 (6)0.0042 (5)
N20.0496 (8)0.0340 (7)0.0452 (7)0.0086 (6)0.0131 (6)0.0074 (6)
N30.0705 (11)0.0482 (10)0.0599 (10)0.0145 (8)0.0302 (8)0.0064 (8)
N40.0620 (10)0.0447 (8)0.0470 (8)0.0047 (7)0.0112 (7)0.0032 (6)
N50.0623 (10)0.0561 (10)0.0474 (8)0.0137 (8)0.0021 (7)0.0009 (7)
N60.0813 (15)0.0677 (12)0.0659 (12)0.0023 (11)0.0131 (11)0.0088 (10)
O10.0457 (7)0.0326 (6)0.0661 (8)0.0088 (5)0.0019 (6)0.0034 (5)
O20.0556 (8)0.0396 (7)0.0740 (9)0.0047 (6)0.0157 (7)0.0123 (6)
O30.0735 (9)0.0405 (7)0.0540 (7)0.0196 (6)0.0186 (6)0.0065 (5)
O40.0638 (9)0.0579 (8)0.0729 (9)0.0211 (7)0.0159 (7)0.0047 (7)
O50.0873 (11)0.0771 (10)0.0574 (9)0.0112 (8)0.0233 (8)0.0126 (7)
O60.0637 (9)0.0672 (9)0.0839 (11)0.0132 (7)0.0017 (8)0.0137 (8)
C150.0932 (19)0.0754 (16)0.0761 (15)0.0252 (13)0.0131 (14)0.0127 (12)
C160.095 (2)0.151 (3)0.125 (3)0.047 (2)0.026 (2)0.030 (2)
O70.0647 (9)0.0672 (9)0.0588 (8)0.0062 (7)0.0071 (7)0.0032 (7)
O1W0.154 (2)0.1015 (16)0.1034 (16)0.0471 (15)0.0175 (16)0.0006 (12)
Geometric parameters (Å, º) top
C1—C61.389 (2)C12—O41.326 (3)
C1—C21.392 (2)C13—O41.454 (2)
C1—C71.484 (2)C13—H13A0.9600
C2—C31.392 (2)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.385 (3)C14—O61.222 (2)
C3—C111.489 (2)C14—N61.333 (3)
C4—C51.385 (3)C14—N51.387 (3)
C4—H40.9300N1—N21.3476 (17)
C5—C61.385 (2)N2—H2A0.8600
C5—H50.9300N3—H3A0.86 (3)
C6—H60.9300N3—H3B0.85 (3)
C7—N11.290 (2)N4—N51.356 (2)
C7—C81.498 (2)N5—H5A0.8600
C8—O21.206 (2)N6—H6A0.84 (3)
C8—O11.3224 (19)N6—H6B0.90 (3)
C9—O11.453 (2)C15—O71.408 (3)
C9—H9A0.9600C15—C161.448 (4)
C9—H9B0.9600C15—H15A0.9700
C9—H9C0.9600C15—H15B0.9700
C10—O31.234 (2)C16—H16A0.9600
C10—N31.325 (2)C16—H16B0.9600
C10—N21.377 (2)C16—H16C0.9600
C11—N41.283 (2)O7—H70.88 (3)
C11—C121.499 (2)O1W—H1WA0.8501
C12—O51.209 (2)O1W—H1WB0.8495
C6—C1—C2119.41 (15)O4—C13—H13A109.5
C6—C1—C7120.66 (15)O4—C13—H13B109.5
C2—C1—C7119.90 (15)H13A—C13—H13B109.5
C1—C2—C3120.53 (16)O4—C13—H13C109.5
C1—C2—H2119.7H13A—C13—H13C109.5
C3—C2—H2119.7H13B—C13—H13C109.5
C4—C3—C2119.55 (16)O6—C14—N6125.3 (2)
C4—C3—C11122.79 (15)O6—C14—N5118.5 (2)
C2—C3—C11117.63 (16)N6—C14—N5116.2 (2)
C3—C4—C5120.03 (16)C7—N1—N2118.53 (13)
C3—C4—H4120.0N1—N2—C10119.73 (13)
C5—C4—H4120.0N1—N2—H2A120.1
C6—C5—C4120.47 (18)C10—N2—H2A120.1
C6—C5—H5119.8C10—N3—H3A121 (2)
C4—C5—H5119.8C10—N3—H3B117.5 (16)
C5—C6—C1119.98 (17)H3A—N3—H3B121 (2)
C5—C6—H6120.0C11—N4—N5119.39 (15)
C1—C6—H6120.0N4—N5—C14119.03 (16)
N1—C7—C1125.35 (14)N4—N5—H5A120.5
N1—C7—C8113.16 (14)C14—N5—H5A120.5
C1—C7—C8121.49 (13)C14—N6—H6A122 (2)
O2—C8—O1123.61 (15)C14—N6—H6B115.9 (16)
O2—C8—C7125.05 (15)H6A—N6—H6B122 (3)
O1—C8—C7111.33 (14)C8—O1—C9116.52 (14)
O1—C9—H9A109.5C12—O4—C13116.15 (18)
O1—C9—H9B109.5O7—C15—C16113.2 (2)
H9A—C9—H9B109.5O7—C15—H15A108.9
O1—C9—H9C109.5C16—C15—H15A108.9
H9A—C9—H9C109.5O7—C15—H15B108.9
H9B—C9—H9C109.5C16—C15—H15B108.9
O3—C10—N3124.35 (16)H15A—C15—H15B107.8
O3—C10—N2118.54 (15)C15—C16—H16A109.5
N3—C10—N2117.12 (15)C15—C16—H16B109.5
N4—C11—C3124.74 (15)H16A—C16—H16B109.5
N4—C11—C12113.41 (16)C15—C16—H16C109.5
C3—C11—C12121.77 (17)H16A—C16—H16C109.5
O5—C12—O4124.16 (18)H16B—C16—H16C109.5
O5—C12—C11124.6 (2)C15—O7—H7111 (2)
O4—C12—C11111.25 (17)H1WA—O1W—H1WB109.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O60.852.052.879 (3)166
O1W—H1WB···O5i0.852.162.941 (3)152
N3—H3A···O70.86 (4)2.13 (4)2.980 (2)169 (3)
N3—H3B···O5ii0.85 (3)2.61 (2)3.082 (2)116.7 (18)
N5—H5A···O3iii0.862.193.010 (2)160
N6—H6A···O1Wiv0.84 (3)2.34 (3)3.137 (3)158 (3)
N6—H6B···O7v0.90 (3)1.99 (3)2.871 (3)166 (2)
O7—H7···O20.88 (3)1.96 (3)2.801 (2)158 (3)
O7—H7···N10.88 (3)2.52 (3)3.0677 (19)121 (2)
C4—H4···O6vi0.932.573.493 (2)173
C13—H13C···N6vii0.962.623.405 (3)139
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x1, y+1/2, z1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+3/2; (v) x, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H16N6O6·C2H6O·H2O
Mr428.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.5810 (2), 12.1216 (3), 23.0379 (7)
β (°) 97.254 (3)
V3)2100.11 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.94
Crystal size (mm)0.41 × 0.32 × 0.26
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.700, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15863, 4317, 2927
Rint0.035
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 0.98
No. of reflections4317
No. of parameters298
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O60.852.052.879 (3)166
O1W—H1WB···O5i0.852.162.941 (3)152
N3—H3A···O70.86 (4)2.13 (4)2.980 (2)169 (3)
N3—H3B···O5ii0.85 (3)2.61 (2)3.082 (2)116.7 (18)
N5—H5A···O3iii0.862.193.010 (2)160
N6—H6A···O1Wiv0.84 (3)2.34 (3)3.137 (3)158 (3)
N6—H6B···O7v0.90 (3)1.99 (3)2.871 (3)166 (2)
O7—H7···O20.88 (3)1.96 (3)2.801 (2)158 (3)
O7—H7···N10.88 (3)2.52 (3)3.0677 (19)121 (2)
C4—H4···O6vi0.932.573.493 (2)173
C13—H13C···N6vii0.962.623.405 (3)139
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x1, y+1/2, z1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+3/2; (v) x, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbek­istan (No. FA—F3–T-141)

References

First citationIsmatov, D. N., Azizov, U. M., Leonteva, L. I., Zakirov, A. U. & Yuldashev, S. Z. (2001). Pharm. Chem. J. 35, 418–420.  CrossRef CAS Google Scholar
First citationIsmatov, D. N., Azizov, U. M., Nurullaeva, M. K. & Iskandarov, S. I. (1991). Pharm. Chem. J., 25, 498–502.  CrossRef Google Scholar
First citationIsmatov, D. N., Leonteva, L. I., Azizov, U. M., Karshiev, D. N. & Zakirov, U. B. (1998). Pharm. Chem. J., 32, 593–594.  CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds