organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o270-o271

N,N′-Di­benzyl-N′′-(2,4-di­fluoro­benzo­yl)-N,N′-di­methyl­phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 25 November 2011; accepted 21 December 2011; online 7 January 2012)

In the title mol­ecule, C23H24F2N3O2P, the P atom is in a distorted tetra­hedral P(=O)(N)(N)2 environment, with the bond angles around the P atom in the range 106.78 (11)–114.10 (13)°. The phosphoryl and carbonyl groups, which are separated by an N atom, adopt an anti orientation relative to each other. In the C(=O)NHP(=O) fragment, the P—N bond is longer [1.683 (2) Å] and the O—P—N angle is smaller [106.78 (11)°] than the other P—N bonds [1.613 (2) and 1.632 (2) Å] and O—P—N bond angles [114.10 (13) and 110.83 (12)°], respectively. The N atoms have sp2 character. In the crystal, pairs of P=O⋯H—N hydrogen bonds form inversion dimers with R22(8) ring motifs.

Related literature

For hydrogen-bond patterns in compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2 and for the discussion of different C(=O) versus P(=O) orientations in the C(O)NHP(O) fragment, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]). For hydrogen-bond strengths in cyclic hydrogen-bond motifs and for bond lengths and angles, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). For graph-set analysis of hydrogen-bonds motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis of the starting phospho­rous–chlorine compound, see: Pourayoubi et al. (2010[Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24F2N3O2P

  • Mr = 443.42

  • Triclinic, [P \overline 1]

  • a = 10.3619 (6) Å

  • b = 10.7721 (10) Å

  • c = 11.6433 (8) Å

  • α = 70.523 (7)°

  • β = 72.495 (5)°

  • γ = 70.197 (7)°

  • V = 1126.65 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.44 mm−1

  • T = 300 K

  • 0.17 × 0.14 × 0.03 mm

Data collection
  • Agilent Xcalibur Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.954, Tmax = 1.000

  • 10022 measured reflections

  • 4209 independent reflections

  • 2758 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.01

  • 4209 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5i 0.86 1.96 2.812 (3) 171
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In a recently published paper, the collective behavior of hydrogen bonds (HBs) in the crystal packing of phosphoramidates having a C(O)NHP(O)(N)2 and C(O)NHP(O)(NH)2 skeletons were considered (Toghraee et al., 2011). The authors attempted to arrive at some empirical rules which are useful for predicting hydrogen-bond patterns in systems having "two H-acceptors and one H-donor site" and "two H-acceptors and three H-donor sites". As a continuation, the hydrogen bond strengths in such systems were analyzed based on hydrogen bond motifs (Pourayoubi et al., 2011).

The structure determination of the title molecule, P(O)[NHC(O)C6H3(2,4-F2)][N(CH3)(CH2C6H5)]2 (Fig. 1), was performed according to our interest in the collection of structural data related to new compounds having a C(O)NHP(O) skeleton.

The phosphoryl and the carbonyl groups in the title molecule adopt an anti orientation relative to each other similarly to most of the carbacylamidophosphates. However, a few examples with a gauche orientation of these two groups were also reported (Toghraee et al., 2011). The phosphorus atom has a distorted tetrahedral configuration and the PO, CO, P—N bond lengths and P—N—C bond angles are within the expected values. In the crystal structure, pairs of intermolecular P O···H—N hydrogen bonds (Table 1) form centrosymmetric dimers, see Figure 2, as R22(8) rings (Bernstein et al., 1995).

Related literature top

For hydrogen-bond patterns in compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2 and for the discussion of different C(O) versus P(O) orientations in the C(O)NHP(O) fragment, see: Toghraee et al. (2011). For hydrogen-bond strengths in cyclic hydrogen-bond motifs and for bond lengths and angles, see: Pourayoubi et al. (2011). For graph-set analysis of hydrogen-bonds motifs, see: Bernstein et al. (1995). For the synthesis of the starting phosphorous–chlorine compound, see: Pourayoubi et al. (2010).

Experimental top

Synthesis of 2,4-F2–C6H3C(O)NHP(O)Cl2. 2,4-F2–C6H3C(O)NHP(O)Cl2 was prepared similarly to the procedure which was used for the preparation of 2,6-F2–C6H3C(O)NHP(O)Cl2 (Pourayoubi et al., 2010), but by using 2,4–F2–C6H3C(O)NH2 instead of 2,6–F2–C6H3C(O)NH2.

Synthesis of title molecule. To a solution of 2,4-F2–C6H3C(O)NHP(O)Cl2 (2 mmol) in CHCl3 (20 ml), a solution of N-methylbenzylamine (8 mmol) in CHCl3 (5 ml) was added dropwise at 273 K. After 4 h stirring, the solvent was evaporated in vacuum and then the resulting solid was washed with distilled water. Single crystals of title compound were obtained from a mixture of CHCl3 and n-C7H16 (5 to 1 v/v) after slow evaporation at room temperature. IR (KBr, cm-1): 3064, 3043, 2872, 1683 (CO), 1615, 1453, 1343, 1265, 1215, 1175, 1155, 1128, 1088, 1017, 959, 877, 820, 791, 738, 714.

Refinement top

All H atoms were placed in geometrically calculated positions with N—H = 0.86 Å and C—H = 0.93 (aromatic C—H), 0.96 (CH3) or 0.97 Å (CH2). H atoms were refined in riding mode with Uiso(H) = 1.5 Ueq(C) for methyl groups and Uiso(H) = 1.2 Ueq(C/N) for all other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 30% probability level.
[Figure 2] Fig. 2. A view of the centrosymmetric dimer formed by H-bonding. The H atoms not involved in the hydrogen bonding interaction have been omitted for clarity.
N,N'-Dibenzyl-N''-(2,4-difluorobenzoyl)- N,N'-dimethylphosphoric triamide top
Crystal data top
C23H24F2N3O2PZ = 2
Mr = 443.42F(000) = 464
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 10.3619 (6) ÅCell parameters from 2755 reflections
b = 10.7721 (10) Åθ = 4.1–70.6°
c = 11.6433 (8) ŵ = 1.44 mm1
α = 70.523 (7)°T = 300 K
β = 72.495 (5)°Plate, colorless
γ = 70.197 (7)°0.17 × 0.14 × 0.03 mm
V = 1126.65 (15) Å3
Data collection top
Agilent Xcalibur Gemini R
diffractometer
4209 independent reflections
Radiation source: Enhance (Cu) X-ray Source2758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10.2673 pixels mm-1θmax = 70.7°, θmin = 4.1°
ω scansh = 812
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1213
Tmin = 0.954, Tmax = 1.000l = 1414
10022 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0585P)2]
where P = (Fo2 + 2Fc2)/3
4209 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H24F2N3O2Pγ = 70.197 (7)°
Mr = 443.42V = 1126.65 (15) Å3
Triclinic, P1Z = 2
a = 10.3619 (6) ÅCu Kα radiation
b = 10.7721 (10) ŵ = 1.44 mm1
c = 11.6433 (8) ÅT = 300 K
α = 70.523 (7)°0.17 × 0.14 × 0.03 mm
β = 72.495 (5)°
Data collection top
Agilent Xcalibur Gemini R
diffractometer
4209 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2758 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 1.000Rint = 0.044
10022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.47 e Å3
4209 reflectionsΔρmin = 0.27 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.58022 (6)0.27216 (7)0.57829 (7)0.0460 (2)
N20.4103 (2)0.3411 (2)0.5698 (2)0.0484 (5)
H20.38660.42550.52970.058*
N30.6579 (2)0.1967 (3)0.4676 (2)0.0586 (6)
N40.5904 (2)0.1570 (2)0.7108 (2)0.0528 (6)
O50.63610 (18)0.38484 (19)0.5704 (2)0.0595 (5)
O60.3324 (2)0.1512 (2)0.6516 (2)0.0684 (6)
F70.0748 (2)0.2082 (2)0.5985 (2)0.0946 (7)
F80.24562 (18)0.6018 (2)0.6907 (2)0.0991 (7)
C90.1600 (3)0.3630 (3)0.6399 (3)0.0503 (7)
C100.1264 (3)0.4859 (3)0.6711 (3)0.0594 (7)
H100.19770.51440.67920.071*
C110.0098 (3)0.5667 (4)0.6902 (3)0.0681 (6)
H110.03150.64840.71150.082*
C120.1121 (3)0.5211 (4)0.6763 (3)0.0681 (6)
C130.0871 (3)0.4028 (3)0.6477 (3)0.0604 (5)
H130.15920.37490.64000.072*
C140.0492 (3)0.3252 (3)0.6305 (3)0.0604 (5)
C150.6261 (3)0.2312 (3)0.2566 (3)0.0548 (7)
C160.5939 (3)0.3719 (3)0.2161 (3)0.0689 (9)
H160.55050.42380.27390.083*
C170.6249 (4)0.4357 (4)0.0925 (4)0.0835 (11)
H170.60240.53050.06660.100*
C180.6890 (4)0.3607 (5)0.0060 (4)0.0868 (12)
H180.70970.40470.07830.104*
C190.7225 (3)0.2209 (4)0.0442 (3)0.0767 (10)
H190.76630.16990.01420.092*
C200.6910 (3)0.1556 (3)0.1697 (3)0.0586 (7)
H200.71350.06070.19540.070*
C210.7259 (3)0.0736 (3)0.8050 (3)0.0553 (7)
C220.7176 (3)0.2009 (3)0.8816 (3)0.0663 (8)
H220.64350.23390.88620.080*
C230.8165 (4)0.2796 (4)0.9508 (4)0.0905 (12)
H230.81010.36581.00100.109*
C240.9252 (4)0.2314 (5)0.9463 (4)0.1019 (14)
H240.99200.28430.99400.122*
C250.9347 (4)0.1054 (5)0.8716 (4)0.0970 (13)
H251.00800.07230.86900.116*
C260.8370 (3)0.0268 (4)0.8002 (4)0.0770 (10)
H260.84560.05820.74840.092*
C270.3063 (3)0.2749 (3)0.6210 (3)0.0512 (7)
C280.5913 (3)0.1608 (3)0.3930 (3)0.0622 (8)
H28A0.49030.18590.42290.075*
H28B0.62200.06270.40370.075*
C290.6160 (3)0.0108 (3)0.7288 (3)0.0600 (8)
H29A0.64610.00920.64810.072*
H29B0.52890.01480.77040.072*
C300.8121 (3)0.1484 (4)0.4424 (4)0.0864 (12)
H30A0.84730.17660.49430.130*
H30B0.84940.18650.35630.130*
H30C0.84010.05050.46000.130*
C310.5236 (4)0.2029 (4)0.8241 (3)0.0922 (13)
H31A0.51100.29960.80520.138*
H31B0.58190.15640.88420.138*
H31C0.43400.18310.85750.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0399 (3)0.0435 (4)0.0562 (4)0.0113 (3)0.0114 (3)0.0136 (3)
N20.0407 (10)0.0409 (12)0.0630 (15)0.0116 (9)0.0131 (10)0.0100 (10)
N30.0524 (12)0.0660 (16)0.0568 (15)0.0061 (11)0.0139 (11)0.0230 (12)
N40.0536 (12)0.0533 (14)0.0517 (14)0.0087 (10)0.0142 (11)0.0167 (11)
O50.0465 (9)0.0476 (11)0.0894 (15)0.0148 (8)0.0206 (10)0.0161 (10)
O60.0572 (11)0.0446 (12)0.1014 (18)0.0157 (9)0.0223 (11)0.0092 (11)
F70.0756 (12)0.0788 (14)0.150 (2)0.0270 (10)0.0354 (13)0.0388 (14)
F80.0412 (9)0.1202 (18)0.1219 (19)0.0012 (10)0.0078 (10)0.0427 (15)
C90.0430 (13)0.0523 (16)0.0551 (17)0.0172 (12)0.0112 (12)0.0079 (13)
C100.0503 (15)0.0680 (19)0.065 (2)0.0196 (14)0.0077 (13)0.0238 (16)
C110.0461 (10)0.0789 (16)0.0738 (16)0.0124 (10)0.0027 (10)0.0261 (13)
C120.0461 (10)0.0789 (16)0.0738 (16)0.0124 (10)0.0027 (10)0.0261 (13)
C130.0479 (9)0.0677 (13)0.0672 (14)0.0239 (9)0.0129 (9)0.0101 (11)
C140.0479 (9)0.0677 (13)0.0672 (14)0.0239 (9)0.0129 (9)0.0101 (11)
C150.0556 (15)0.0624 (18)0.0538 (18)0.0246 (13)0.0113 (13)0.0154 (14)
C160.076 (2)0.063 (2)0.067 (2)0.0164 (16)0.0143 (17)0.0183 (17)
C170.088 (2)0.077 (2)0.070 (2)0.018 (2)0.022 (2)0.002 (2)
C180.081 (2)0.110 (3)0.056 (2)0.025 (2)0.0169 (18)0.002 (2)
C190.0647 (19)0.109 (3)0.062 (2)0.0185 (19)0.0110 (16)0.036 (2)
C200.0537 (15)0.071 (2)0.0576 (19)0.0199 (14)0.0103 (14)0.0230 (16)
C210.0517 (15)0.0591 (17)0.0504 (17)0.0104 (13)0.0117 (13)0.0117 (14)
C220.0624 (17)0.0610 (19)0.064 (2)0.0105 (15)0.0121 (15)0.0088 (16)
C230.085 (3)0.079 (3)0.079 (3)0.004 (2)0.024 (2)0.003 (2)
C240.072 (2)0.113 (4)0.095 (3)0.013 (2)0.038 (2)0.014 (3)
C250.0576 (19)0.119 (4)0.112 (3)0.012 (2)0.036 (2)0.022 (3)
C260.0608 (18)0.082 (2)0.084 (3)0.0206 (17)0.0262 (17)0.005 (2)
C270.0479 (14)0.0464 (16)0.0629 (18)0.0154 (12)0.0173 (13)0.0107 (13)
C280.0791 (19)0.0574 (18)0.0570 (19)0.0301 (15)0.0025 (15)0.0216 (15)
C290.0641 (17)0.0502 (17)0.068 (2)0.0211 (14)0.0254 (15)0.0026 (15)
C300.0557 (18)0.109 (3)0.083 (3)0.0049 (18)0.0099 (17)0.042 (2)
C310.098 (3)0.105 (3)0.059 (2)0.006 (2)0.019 (2)0.034 (2)
Geometric parameters (Å, º) top
P1—O51.4787 (19)C17—H170.9300
P1—N31.613 (2)C18—C191.371 (5)
P1—N41.632 (2)C18—H180.9300
P1—N21.683 (2)C19—C201.386 (5)
N2—C271.370 (3)C19—H190.9300
N2—H20.8600C20—H200.9300
N3—C281.465 (4)C21—C221.379 (4)
N3—C301.472 (4)C21—C261.385 (4)
N4—C311.455 (4)C21—C291.510 (4)
N4—C291.458 (4)C22—C231.367 (5)
O6—C271.213 (3)C22—H220.9300
F7—C141.351 (4)C23—C241.372 (6)
F8—C121.357 (3)C23—H230.9300
C9—C141.385 (4)C24—C251.364 (6)
C9—C101.392 (4)C24—H240.9300
C9—C271.487 (4)C25—C261.375 (5)
C10—C111.381 (4)C25—H250.9300
C10—H100.9300C26—H260.9300
C11—C121.379 (5)C28—H28A0.9700
C11—H110.9300C28—H28B0.9700
C12—C131.345 (4)C29—H29A0.9700
C13—C141.370 (4)C29—H29B0.9700
C13—H130.9300C30—H30A0.9600
C15—C161.381 (4)C30—H30B0.9600
C15—C201.382 (4)C30—H30C0.9600
C15—C281.504 (4)C31—H31A0.9600
C16—C171.363 (5)C31—H31B0.9600
C16—H160.9300C31—H31C0.9600
C17—C181.373 (6)
O5—P1—N3114.10 (13)C15—C20—C19120.1 (3)
O5—P1—N4110.83 (12)C15—C20—H20120.0
N3—P1—N4108.04 (13)C19—C20—H20120.0
O5—P1—N2106.78 (11)C22—C21—C26118.3 (3)
N3—P1—N2108.02 (12)C22—C21—C29120.1 (3)
N4—P1—N2108.93 (12)C26—C21—C29121.7 (3)
C27—N2—P1125.86 (19)C23—C22—C21121.1 (3)
C27—N2—H2117.1C23—C22—H22119.4
P1—N2—H2117.1C21—C22—H22119.4
C28—N3—C30114.7 (2)C22—C23—C24120.1 (4)
C28—N3—P1127.0 (2)C22—C23—H23120.0
C30—N3—P1118.1 (2)C24—C23—H23120.0
C31—N4—C29114.2 (3)C25—C24—C23119.7 (4)
C31—N4—P1117.2 (2)C25—C24—H24120.2
C29—N4—P1125.2 (2)C23—C24—H24120.2
C14—C9—C10116.4 (3)C24—C25—C26120.5 (4)
C14—C9—C27121.6 (3)C24—C25—H25119.7
C10—C9—C27122.0 (2)C26—C25—H25119.7
C11—C10—C9121.9 (3)C25—C26—C21120.4 (4)
C11—C10—H10119.1C25—C26—H26119.8
C9—C10—H10119.1C21—C26—H26119.8
C12—C11—C10117.2 (3)O6—C27—N2121.8 (2)
C12—C11—H11121.4O6—C27—C9122.0 (2)
C10—C11—H11121.4N2—C27—C9116.2 (2)
C13—C12—F8118.3 (3)N3—C28—C15112.2 (2)
C13—C12—C11124.0 (3)N3—C28—H28A109.2
F8—C12—C11117.7 (3)C15—C28—H28A109.2
C12—C13—C14117.0 (3)N3—C28—H28B109.2
C12—C13—H13121.5C15—C28—H28B109.2
C14—C13—H13121.5H28A—C28—H28B107.9
F7—C14—C13117.0 (3)N4—C29—C21112.5 (2)
F7—C14—C9119.4 (3)N4—C29—H29A109.1
C13—C14—C9123.6 (3)C21—C29—H29A109.1
C16—C15—C20118.9 (3)N4—C29—H29B109.1
C16—C15—C28120.8 (3)C21—C29—H29B109.1
C20—C15—C28120.3 (3)H29A—C29—H29B107.8
C17—C16—C15120.8 (3)N3—C30—H30A109.5
C17—C16—H16119.6N3—C30—H30B109.5
C15—C16—H16119.6H30A—C30—H30B109.5
C16—C17—C18120.4 (4)N3—C30—H30C109.5
C16—C17—H17119.8H30A—C30—H30C109.5
C18—C17—H17119.8H30B—C30—H30C109.5
C19—C18—C17119.8 (4)N4—C31—H31A109.5
C19—C18—H18120.1N4—C31—H31B109.5
C17—C18—H18120.1H31A—C31—H31B109.5
C18—C19—C20120.0 (3)N4—C31—H31C109.5
C18—C19—H19120.0H31A—C31—H31C109.5
C20—C19—H19120.0H31B—C31—H31C109.5
O5—P1—N2—C27152.1 (2)C28—C15—C16—C17179.7 (3)
N3—P1—N2—C2784.8 (3)C15—C16—C17—C180.1 (6)
N4—P1—N2—C2732.3 (3)C16—C17—C18—C190.2 (6)
O5—P1—N3—C28133.5 (2)C17—C18—C19—C200.3 (6)
N4—P1—N3—C28102.7 (3)C16—C15—C20—C190.1 (4)
N2—P1—N3—C2815.0 (3)C28—C15—C20—C19179.8 (3)
O5—P1—N3—C3051.3 (3)C18—C19—C20—C150.2 (5)
N4—P1—N3—C3072.4 (3)C26—C21—C22—C230.2 (5)
N2—P1—N3—C30169.9 (2)C29—C21—C22—C23179.6 (3)
O5—P1—N4—C3155.7 (3)C21—C22—C23—C241.0 (6)
N3—P1—N4—C31178.6 (2)C22—C23—C24—C250.7 (7)
N2—P1—N4—C3161.5 (3)C23—C24—C25—C260.5 (7)
O5—P1—N4—C29146.5 (2)C24—C25—C26—C211.2 (6)
N3—P1—N4—C2920.8 (3)C22—C21—C26—C250.9 (5)
N2—P1—N4—C2996.3 (2)C29—C21—C26—C25179.3 (3)
C14—C9—C10—C110.7 (5)P1—N2—C27—O618.5 (4)
C27—C9—C10—C11179.1 (3)P1—N2—C27—C9159.9 (2)
C9—C10—C11—C120.4 (5)C14—C9—C27—O634.0 (5)
C10—C11—C12—C131.2 (6)C10—C9—C27—O6144.4 (3)
C10—C11—C12—F8177.8 (3)C14—C9—C27—N2147.6 (3)
F8—C12—C13—C14178.3 (3)C10—C9—C27—N234.1 (4)
C11—C12—C13—C140.7 (5)C30—N3—C28—C1566.2 (4)
C12—C13—C14—F7178.3 (3)P1—N3—C28—C15118.5 (3)
C12—C13—C14—C90.6 (5)C16—C15—C28—N358.5 (4)
C10—C9—C14—F7178.9 (3)C20—C15—C28—N3121.6 (3)
C27—C9—C14—F72.7 (5)C31—N4—C29—C2168.0 (3)
C10—C9—C14—C131.2 (5)P1—N4—C29—C21133.6 (2)
C27—C9—C14—C13179.7 (3)C22—C21—C29—N4148.0 (3)
C20—C15—C16—C170.2 (5)C26—C21—C29—N432.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.861.962.812 (3)171
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H24F2N3O2P
Mr443.42
Crystal system, space groupTriclinic, P1
Temperature (K)300
a, b, c (Å)10.3619 (6), 10.7721 (10), 11.6433 (8)
α, β, γ (°)70.523 (7), 72.495 (5), 70.197 (7)
V3)1126.65 (15)
Z2
Radiation typeCu Kα
µ (mm1)1.44
Crystal size (mm)0.17 × 0.14 × 0.03
Data collection
DiffractometerAgilent Xcalibur Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.954, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10022, 4209, 2758
Rint0.044
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.01
No. of reflections4209
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.861.962.812 (3)171.1
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Spanish Ministerio de Educacion y Ciencia (MAT2006–01997, MAT2010–15094 and the `Factoría de Cristalización' Consolider Ingenio 2010) and FEDER funding is acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o270-o271
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds