organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(4-Bromo­phen­yl)(morpholin-4-yl)meth­yl]naphthalen-2-ol

aSchool of Pharmaceutical Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, People's Republic of China
*Correspondence e-mail: qzhaonucm@gmail.com

(Received 11 January 2012; accepted 20 January 2012; online 31 January 2012)

The title compound, C21H20BrNO2, was obtained from a condensation reaction of 4-bromo­benzaldehyde, 2-naphthol and morpholine. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, closing a six-membered ring. The dihedral angle between the naphthalene ring system and the benzene ring is 76.72 (8)°. In addition to the intra­molecular hydrogen bond, the O—H groups of centrosymmetrically related mol­ecules form short inter­molecular H⋯O contacts of 2.59 Å. These mol­ecules are also linked by pairs of C—H⋯O inter­actions, generating an R22(14) motif.

Related literature

For applications of Betti-type reactions, see: Lu et al. (2002[Lu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367-8369.]); Xu et al. (2004[Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475-479.]); Wang et al. (2005[Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897-1900.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20BrNO2

  • Mr = 398.29

  • Monoclinic, P 21 /n

  • a = 11.024 (2) Å

  • b = 12.119 (2) Å

  • c = 13.875 (3) Å

  • β = 104.55 (3)°

  • V = 1794.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.802, Tmax = 1.000

  • 18164 measured reflections

  • 4108 independent reflections

  • 3021 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.102

  • S = 1.08

  • 4108 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.93 2.622 (3) 142
C13—H13A⋯O1i 0.93 2.53 3.357 (4) 148
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu et al. 2002; Xu et al. 2004; Wang et al. 2005). Herein we report the synthesis and crystal structure of the title compound, 1-((4-bromophenyl)(morpholino)methyl)naphthalen-2-ol (Fig. 1).

In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthylene ring system and the benzene ring is 76.72 (8)°. In the solid state the molecules are linked into centrosymmetric R22(14) dimers by a simple C–H···O interaction (Fig. 2). In addition to intramolecular hydrogen bond,the O-H groups of centrosymmetrically related molecules form short intermolecular H···O contacts of 2.59 Å. The molecular conformation is stabilized by O–H···N a hydrogen bonding, Table 1.

Related literature top

For applications of Betti-type reactions, see: Lu et al. (2002); Xu et al. (2004); Wang et al. (2005).

Experimental top

4-Bromobenzaldehyde (2.76 g, 0.015 mol) and morpholine (1.305 g, 0.015 mol) were added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 12 h. The system was treated with 30 ml of 95% ethanol and cooled. The precipitate was filtered and washed with a small amount of 95% ethanol. The title compound was isolated using column chromatography (petroleum ether/ethyl acetate 3/1). The melting point of the title compound is 443 K. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.3–1.6Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing C-H···O hydrogen bonds.
1-[(4-Bromophenyl)(morpholin-4-yl)methyl]naphthalen-2-ol top
Crystal data top
C21H20BrNO2F(000) = 816
Mr = 398.29Dx = 1.474 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4108 reflections
a = 11.024 (2) Åθ = 2.7–27.5°
b = 12.119 (2) ŵ = 2.31 mm1
c = 13.875 (3) ÅT = 293 K
β = 104.55 (3)°Prism, colorless
V = 1794.2 (6) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4108 independent reflections
Radiation source: fine-focus sealed tube3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ scanh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.802, Tmax = 1.000l = 1718
18164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.6882P]
where P = (Fo2 + 2Fc2)/3
4108 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C21H20BrNO2V = 1794.2 (6) Å3
Mr = 398.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.024 (2) ŵ = 2.31 mm1
b = 12.119 (2) ÅT = 293 K
c = 13.875 (3) Å0.2 × 0.2 × 0.2 mm
β = 104.55 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4108 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3021 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 1.000Rint = 0.059
18164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
4108 reflectionsΔρmin = 0.48 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.13818 (3)0.46528 (3)0.17657 (3)0.05695 (13)
O10.44848 (19)0.46722 (16)0.08452 (13)0.0495 (5)
H1A0.48650.52490.08220.074*
N10.54544 (19)0.65629 (17)0.15761 (14)0.0339 (5)
C150.9785 (2)0.5011 (2)0.1973 (2)0.0387 (6)
C160.9716 (2)0.5484 (2)0.2853 (2)0.0430 (7)
H16A1.04390.56040.33560.052*
O20.41804 (19)0.84827 (16)0.06130 (14)0.0529 (5)
C170.8560 (2)0.5779 (2)0.29851 (19)0.0383 (6)
H17A0.85130.61140.35780.046*
C50.5138 (3)0.3376 (2)0.3700 (2)0.0465 (7)
C10.5505 (2)0.4867 (2)0.25927 (18)0.0343 (6)
C110.6207 (2)0.5910 (2)0.24246 (17)0.0328 (5)
H11A0.63520.63640.30270.039*
C100.5719 (2)0.4394 (2)0.35761 (19)0.0373 (6)
C90.6502 (3)0.4891 (3)0.44318 (19)0.0462 (7)
H9A0.68890.55600.43740.055*
C120.7474 (2)0.5589 (2)0.22564 (17)0.0320 (5)
C30.4124 (3)0.3329 (2)0.1943 (2)0.0472 (7)
H3A0.35870.29860.14020.057*
C140.8724 (3)0.4807 (3)0.1230 (2)0.0508 (8)
H14A0.87800.44860.06340.061*
C210.4301 (2)0.6992 (2)0.1799 (2)0.0422 (6)
H21A0.45170.74970.23590.051*
H21B0.38230.63880.19770.051*
C180.6141 (3)0.7518 (2)0.1316 (2)0.0447 (7)
H18A0.69050.72680.11570.054*
H18B0.63700.80180.18780.054*
C60.5383 (3)0.2888 (3)0.4655 (3)0.0652 (10)
H6A0.50120.22160.47330.078*
C130.7575 (3)0.5088 (3)0.1383 (2)0.0518 (8)
H13A0.68520.49370.08880.062*
C20.4726 (2)0.4315 (2)0.18050 (19)0.0379 (6)
C40.4320 (3)0.2876 (2)0.2861 (3)0.0540 (8)
H4A0.39100.22250.29430.065*
C200.3525 (3)0.7583 (3)0.0899 (2)0.0537 (8)
H20A0.32910.70670.03490.064*
H20B0.27610.78530.10440.064*
C190.5324 (3)0.8112 (3)0.0430 (2)0.0530 (8)
H19A0.57780.87400.02650.064*
H19B0.51400.76190.01390.064*
C80.6695 (3)0.4395 (3)0.5347 (2)0.0603 (9)
H8A0.72020.47410.59020.072*
C70.6148 (4)0.3382 (3)0.5461 (3)0.0701 (11)
H7A0.63060.30470.60830.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03958 (18)0.0596 (2)0.0768 (3)0.00364 (14)0.02412 (15)0.00697 (16)
O10.0537 (12)0.0564 (12)0.0335 (10)0.0090 (10)0.0017 (9)0.0046 (9)
N10.0327 (11)0.0389 (12)0.0301 (11)0.0051 (9)0.0080 (9)0.0044 (9)
C150.0317 (14)0.0391 (14)0.0461 (16)0.0020 (11)0.0116 (12)0.0033 (12)
C160.0303 (14)0.0544 (17)0.0416 (15)0.0049 (12)0.0041 (12)0.0009 (13)
O20.0549 (12)0.0499 (12)0.0541 (12)0.0140 (10)0.0141 (10)0.0128 (10)
C170.0378 (14)0.0445 (14)0.0333 (14)0.0052 (12)0.0099 (12)0.0055 (12)
C50.0515 (17)0.0402 (15)0.0567 (18)0.0131 (13)0.0305 (15)0.0087 (14)
C10.0313 (13)0.0378 (14)0.0345 (14)0.0051 (11)0.0097 (11)0.0022 (11)
C110.0334 (13)0.0392 (14)0.0246 (12)0.0019 (11)0.0051 (10)0.0008 (10)
C100.0335 (14)0.0436 (15)0.0382 (14)0.0122 (11)0.0156 (11)0.0069 (12)
C90.0411 (16)0.0630 (18)0.0353 (15)0.0085 (14)0.0109 (13)0.0075 (14)
C120.0330 (13)0.0333 (13)0.0291 (13)0.0007 (10)0.0068 (11)0.0016 (10)
C30.0440 (16)0.0440 (16)0.0580 (19)0.0035 (13)0.0212 (14)0.0132 (14)
C140.0433 (16)0.070 (2)0.0392 (16)0.0070 (15)0.0105 (13)0.0146 (14)
C210.0397 (15)0.0441 (15)0.0454 (16)0.0060 (12)0.0157 (12)0.0023 (13)
C180.0428 (16)0.0471 (16)0.0471 (16)0.0020 (13)0.0168 (13)0.0111 (13)
C60.082 (2)0.057 (2)0.072 (2)0.0237 (18)0.049 (2)0.0276 (18)
C130.0338 (15)0.081 (2)0.0364 (15)0.0038 (14)0.0007 (12)0.0137 (15)
C20.0356 (14)0.0398 (14)0.0391 (15)0.0037 (11)0.0107 (12)0.0026 (12)
C40.0603 (19)0.0344 (15)0.080 (2)0.0028 (14)0.0423 (18)0.0024 (15)
C200.0407 (16)0.0611 (19)0.0580 (19)0.0124 (14)0.0100 (14)0.0038 (16)
C190.0565 (18)0.0564 (18)0.0485 (17)0.0101 (15)0.0174 (14)0.0177 (14)
C80.0511 (18)0.095 (3)0.0367 (16)0.0188 (18)0.0151 (14)0.0153 (16)
C70.080 (2)0.089 (3)0.052 (2)0.036 (2)0.0372 (19)0.037 (2)
Geometric parameters (Å, º) top
Br1—C151.904 (3)C9—H9A0.9300
O1—C21.362 (3)C12—C131.386 (4)
O1—H1A0.8200C3—C41.354 (4)
N1—C181.477 (3)C3—C21.402 (4)
N1—C211.477 (3)C3—H3A0.9300
N1—C111.487 (3)C14—C131.378 (4)
C15—C161.369 (4)C14—H14A0.9300
C15—C141.373 (4)C21—C201.506 (4)
C16—C171.379 (4)C21—H21A0.9700
C16—H16A0.9300C21—H21B0.9700
O2—C201.418 (4)C18—C191.512 (4)
O2—C191.420 (3)C18—H18A0.9700
C17—C121.379 (3)C18—H18B0.9700
C17—H17A0.9300C6—C71.359 (5)
C5—C61.414 (4)C6—H6A0.9300
C5—C41.417 (4)C13—H13A0.9300
C5—C101.421 (4)C4—H4A0.9300
C1—C21.382 (4)C20—H20A0.9700
C1—C101.443 (4)C20—H20B0.9700
C1—C111.530 (4)C19—H19A0.9700
C11—C121.523 (3)C19—H19B0.9700
C11—H11A0.9800C8—C71.394 (5)
C10—C91.414 (4)C8—H8A0.9300
C9—C81.372 (4)C7—H7A0.9300
C2—O1—H1A109.5N1—C21—H21A109.8
C18—N1—C21107.3 (2)C20—C21—H21A109.8
C18—N1—C11113.12 (19)N1—C21—H21B109.8
C21—N1—C11111.10 (19)C20—C21—H21B109.8
C16—C15—C14121.1 (3)H21A—C21—H21B108.2
C16—C15—Br1119.4 (2)N1—C18—C19109.5 (2)
C14—C15—Br1119.4 (2)N1—C18—H18A109.8
C15—C16—C17119.2 (2)C19—C18—H18A109.8
C15—C16—H16A120.4N1—C18—H18B109.8
C17—C16—H16A120.4C19—C18—H18B109.8
C20—O2—C19110.1 (2)H18A—C18—H18B108.2
C16—C17—C12121.3 (2)C7—C6—C5121.3 (3)
C16—C17—H17A119.3C7—C6—H6A119.3
C12—C17—H17A119.3C5—C6—H6A119.3
C6—C5—C4121.5 (3)C14—C13—C12121.4 (3)
C6—C5—C10119.4 (3)C14—C13—H13A119.3
C4—C5—C10119.1 (3)C12—C13—H13A119.3
C2—C1—C10118.5 (2)O1—C2—C1123.3 (2)
C2—C1—C11121.2 (2)O1—C2—C3115.0 (2)
C10—C1—C11120.2 (2)C1—C2—C3121.7 (3)
N1—C11—C12111.41 (19)C3—C4—C5121.1 (3)
N1—C11—C1110.96 (19)C3—C4—H4A119.4
C12—C11—C1109.3 (2)C5—C4—H4A119.4
N1—C11—H11A108.3O2—C20—C21112.0 (2)
C12—C11—H11A108.3O2—C20—H20A109.2
C1—C11—H11A108.3C21—C20—H20A109.2
C9—C10—C5117.8 (2)O2—C20—H20B109.2
C9—C10—C1123.0 (2)C21—C20—H20B109.2
C5—C10—C1119.2 (2)H20A—C20—H20B107.9
C8—C9—C10120.7 (3)O2—C19—C18112.3 (2)
C8—C9—H9A119.6O2—C19—H19A109.1
C10—C9—H9A119.6C18—C19—H19A109.1
C17—C12—C13118.0 (2)O2—C19—H19B109.1
C17—C12—C11120.4 (2)C18—C19—H19B109.1
C13—C12—C11121.6 (2)H19A—C19—H19B107.9
C4—C3—C2120.4 (3)C9—C8—C7121.3 (3)
C4—C3—H3A119.8C9—C8—H8A119.3
C2—C3—H3A119.8C7—C8—H8A119.3
C15—C14—C13118.9 (3)C6—C7—C8119.4 (3)
C15—C14—H14A120.5C6—C7—H7A120.3
C13—C14—H14A120.5C8—C7—H7A120.3
N1—C21—C20109.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.932.622 (3)142
C13—H13A···O1i0.932.533.357 (4)148
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H20BrNO2
Mr398.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.024 (2), 12.119 (2), 13.875 (3)
β (°) 104.55 (3)
V3)1794.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.802, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18164, 4108, 3021
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 1.08
No. of reflections4108
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.48

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.932.622 (3)142
C13—H13A···O1i0.932.533.357 (4)148
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the starter fund of Nanjing University of Chinese Medicine.

References

First citationLu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367–8369.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897–1900.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475–479.  Web of Science CrossRef CSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds