organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-1-phenyl­thio­urea

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 15 January 2012; accepted 19 January 2012; online 25 January 2012)

In the crystal structure of title compound, C9H10N2OS, there are two symmetry-independent mol­ecules, each having an intra­molecular N—H⋯O hydrogen bond generating an S(6) ring motif. The benzene rings and the virtually planar acetyl­thoiurea fragments [r.m.s. deviations = 0.0045 and 0.0341 Å] are oriented at dihedral angles of 50.71 (6) and 62.79 (6)° in the two mol­ecules. In the crystal, N—H⋯S and N—H⋯O hydrogen bonds link mol­ecules via cyclic R22(8) and R22(12) motifs into a one-dimensional polymeric network extending along [101]. The intra- and inter­molecular N—H⋯O inter­actions are part of a three-center hydrogen bond. A C—H⋯S inter­action also occurs.

Related literature

For related structures, see: Othman et al. (2010[Othman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2OS

  • Mr = 194.25

  • Monoclinic, P 21 /c

  • a = 10.1911 (2) Å

  • b = 22.5480 (4) Å

  • c = 8.9736 (2) Å

  • β = 112.449 (1)°

  • V = 1905.77 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.938

  • 16643 measured reflections

  • 4679 independent reflections

  • 3626 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.05

  • 4679 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.97 2.662 (2) 136
N1—H1⋯O2i 0.86 2.46 3.1967 (19) 143
N2—H2A⋯S2ii 0.86 2.64 3.4931 (17) 170
N3—H3A⋯O2 0.86 1.97 2.6633 (7) 137
N3—H3A⋯O1i 0.86 2.42 3.1418 (18) 142
N4—H4A⋯S1ii 0.86 2.57 3.4150 (18) 168
C18—H18B⋯S1ii 0.96 2.83 3.594 (3) 137
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound I (Fig. 1) has been synthesized in search of new enzyme inhibitors.

The crystal structure of N-(3-chloropropionyl)-N'-phenylthiourea (Othman et al., 2010) has been published which is related to the title compound (I).

In (I), two molecules in the asymmetric unit are present, which differ from each other geometrically. In one molecule, the benzene ring A (C1–C6) and the acetylthoiurea moiety B (N1/C7/S1/N2/C8/O1/C9) are planar with r. m. s. deviation of 0.0045 Å and 0.0341 Å, respectively. The dihedral angle between A/B is 50.71 (6)°. In second molecule, the benzene ring C (C10–C15) and the acetylthoiurea moiety D (N3/C16/S2/N4/C17/O2/C18) are also planar with r. m. s. deviation of 0.0037 Å and 0.0453 Å, respectively and the dihedral angle between C/D is 62.79 (6)°. In both molecules, there exist classical intramolecular H–bonding of N—H···O type (Table 1, Fig. 1) with S(6) ring motif (Bernstein et al., 1995). Both molecules are interliked due to strong N—H···O, N—H···S and C—H···S types of H–bondings (Table 1, Fig. 2). The S(6) ring motifs of both molecules are connected into a four membered ring (—O···H···O···H···O—). The N—H···S type of bonding completes R22(8) ring motif. R21(6) ring motif is formed due to C—H···S and N—H···S types of intermolecular H-bondings (Fig. 2). The molecules are linked to form of one-dimensional polymeric chains extending along [101] (Fig. 2).

Related literature top

For related structures, see: Othman et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by adding 0.1 mol (7.13 ml) of acetyl chloride dropwise to a stirred solution of KSCN (0.11 mol) in dry acetone (50 ml), followed by slow addition of aniline (0.1 mol) in dry acetone (25 ml). The mixture was refluxed for 5–10 min, then poured on ice cooled water, which resulted in crude precipitate. Recrystallization of the precipitate in from ethyl acetate yielded light green prisms (m.p. 365 K).

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the displacement ellipsoids drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii. The dotted lines represent the intramolecular H-bondings.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along [1 0 1] direction.
3-Acetyl-1-phenylthiourea top
Crystal data top
C9H10N2OSF(000) = 816
Mr = 194.25Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3626 reflections
a = 10.1911 (2) Åθ = 2.2–28.3°
b = 22.5480 (4) ŵ = 0.30 mm1
c = 8.9736 (2) ÅT = 296 K
β = 112.449 (1)°Prism, light green
V = 1905.77 (7) Å30.35 × 0.25 × 0.22 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4679 independent reflections
Radiation source: fine-focus sealed tube3626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.00 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2329
Tmin = 0.915, Tmax = 0.938l = 1111
16643 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.6731P]
where P = (Fo2 + 2Fc2)/3
4679 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C9H10N2OSV = 1905.77 (7) Å3
Mr = 194.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.1911 (2) ŵ = 0.30 mm1
b = 22.5480 (4) ÅT = 296 K
c = 8.9736 (2) Å0.35 × 0.25 × 0.22 mm
β = 112.449 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4679 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3626 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.938Rint = 0.024
16643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
4679 reflectionsΔρmin = 0.35 e Å3
228 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19196 (6)0.05015 (3)0.17599 (8)0.0666 (2)
O10.22186 (16)0.05280 (6)0.3471 (2)0.0647 (5)
N10.08613 (17)0.04741 (6)0.35398 (19)0.0455 (5)
N20.01041 (17)0.03499 (6)0.19702 (19)0.0463 (5)
C10.09330 (18)0.10632 (7)0.4158 (2)0.0388 (5)
C20.1603 (2)0.11483 (8)0.5792 (2)0.0455 (6)
C30.1800 (2)0.17188 (9)0.6419 (3)0.0548 (7)
C40.1317 (2)0.21994 (8)0.5415 (3)0.0546 (7)
C50.0635 (3)0.21096 (8)0.3790 (3)0.0575 (7)
C60.0449 (2)0.15463 (8)0.3146 (2)0.0532 (7)
C70.0283 (2)0.02154 (8)0.2479 (2)0.0428 (5)
C80.1098 (2)0.06975 (8)0.2494 (2)0.0449 (6)
C90.08992 (12)0.13043 (2)0.17563 (12)0.0596 (7)
S20.29361 (6)0.11538 (2)0.07535 (6)0.0571 (2)
O20.59666 (10)0.02218 (2)0.39879 (7)0.0624 (5)
N30.52470 (6)0.09140 (2)0.33705 (7)0.0456 (5)
N40.41578 (16)0.01207 (6)0.1764 (2)0.0463 (5)
C100.5529 (2)0.15166 (7)0.3895 (2)0.0419 (5)
C110.4580 (2)0.18411 (10)0.4315 (3)0.0569 (7)
C120.4945 (3)0.24100 (10)0.4927 (3)0.0692 (9)
C130.6232 (3)0.26489 (9)0.5078 (3)0.0669 (8)
C140.7165 (3)0.23256 (10)0.4653 (3)0.0641 (8)
C150.6826 (2)0.17540 (9)0.4056 (3)0.0523 (6)
C160.41954 (19)0.07247 (7)0.2070 (2)0.0405 (5)
C170.5029 (2)0.03202 (8)0.2695 (2)0.0459 (6)
C180.4715 (2)0.09258 (9)0.1962 (3)0.0590 (7)
H10.163100.026900.388760.0545*
H20.192440.082410.647600.0546*
H2A0.083940.050250.123210.0555*
H30.225980.177630.752370.0658*
H40.145260.258180.583460.0655*
H50.029140.243370.311140.0690*
H60.000150.149150.203790.0639*
H9A0.158360.157100.247650.0894*
H9B0.102760.128690.075160.0894*
H9C0.004100.144340.156850.0894*
H3A0.581900.064970.396080.0548*
H4A0.350540.000540.087610.0556*
H110.370310.168140.419080.0682*
H120.431860.262990.523510.0830*
H130.646640.303240.547150.0803*
H140.803490.248930.476390.0769*
H150.746390.153370.376710.0627*
H18A0.528160.099680.133700.0886*
H18B0.372730.095190.127740.0886*
H18C0.493380.121740.280220.0886*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0461 (3)0.0524 (3)0.0799 (4)0.0084 (2)0.0003 (3)0.0220 (3)
O10.0495 (8)0.0449 (8)0.0774 (10)0.0053 (6)0.0008 (8)0.0177 (7)
N10.0430 (8)0.0309 (8)0.0525 (9)0.0012 (6)0.0071 (7)0.0056 (6)
N20.0436 (8)0.0339 (8)0.0500 (9)0.0021 (6)0.0053 (7)0.0088 (6)
C10.0400 (9)0.0290 (8)0.0459 (9)0.0014 (7)0.0147 (8)0.0031 (7)
C20.0501 (10)0.0370 (9)0.0446 (10)0.0048 (8)0.0128 (8)0.0013 (7)
C30.0629 (12)0.0491 (11)0.0465 (11)0.0021 (9)0.0143 (9)0.0117 (9)
C40.0709 (13)0.0340 (10)0.0654 (13)0.0038 (9)0.0332 (11)0.0104 (9)
C50.0835 (15)0.0314 (10)0.0602 (12)0.0039 (9)0.0302 (12)0.0064 (8)
C60.0739 (14)0.0386 (10)0.0422 (10)0.0001 (9)0.0166 (10)0.0025 (8)
C70.0470 (10)0.0336 (9)0.0431 (9)0.0001 (7)0.0121 (8)0.0024 (7)
C80.0472 (10)0.0342 (9)0.0475 (10)0.0001 (7)0.0115 (8)0.0036 (7)
C90.0599 (12)0.0392 (10)0.0691 (14)0.0009 (9)0.0128 (11)0.0143 (10)
S20.0581 (3)0.0369 (3)0.0535 (3)0.0050 (2)0.0041 (2)0.0012 (2)
O20.0595 (9)0.0436 (8)0.0599 (9)0.0107 (7)0.0041 (7)0.0056 (7)
N30.0441 (8)0.0323 (7)0.0481 (9)0.0042 (6)0.0037 (7)0.0030 (6)
N40.0443 (8)0.0328 (8)0.0485 (9)0.0012 (6)0.0029 (7)0.0049 (6)
C100.0478 (10)0.0309 (8)0.0381 (9)0.0018 (7)0.0063 (8)0.0013 (7)
C110.0540 (12)0.0503 (12)0.0620 (13)0.0037 (9)0.0174 (10)0.0091 (9)
C120.0836 (17)0.0504 (13)0.0657 (14)0.0180 (12)0.0197 (13)0.0105 (10)
C130.0972 (19)0.0329 (10)0.0563 (13)0.0030 (11)0.0134 (12)0.0048 (9)
C140.0773 (15)0.0446 (12)0.0647 (14)0.0174 (11)0.0206 (12)0.0023 (10)
C150.0573 (12)0.0424 (10)0.0543 (11)0.0020 (9)0.0182 (10)0.0015 (8)
C160.0394 (9)0.0337 (9)0.0443 (9)0.0012 (7)0.0114 (8)0.0004 (7)
C170.0412 (9)0.0357 (9)0.0532 (11)0.0031 (7)0.0095 (8)0.0017 (8)
C180.0563 (12)0.0348 (10)0.0703 (14)0.0060 (9)0.0067 (10)0.0063 (9)
Geometric parameters (Å, º) top
S1—C71.671 (2)C2—H20.9300
S2—C161.6796 (18)C3—H30.9300
O1—C81.206 (3)C4—H40.9300
O2—C171.2090 (19)C5—H50.9300
N1—C71.326 (2)C6—H60.9300
N1—C11.431 (2)C9—H9A0.9600
N2—C71.389 (2)C9—H9B0.9600
N2—C81.377 (3)C9—H9C0.9600
N1—H10.8600C10—C151.382 (3)
N2—H2A0.8600C10—C111.375 (3)
N3—C101.4307 (17)C11—C121.389 (3)
N3—C161.3181 (18)C12—C131.376 (4)
N4—C161.387 (2)C13—C141.363 (4)
N4—C171.381 (2)C14—C151.388 (3)
N3—H3A0.8600C17—C181.496 (3)
N4—H4A0.8600C11—H110.9300
C1—C61.383 (2)C12—H120.9300
C1—C21.374 (2)C13—H130.9300
C2—C31.388 (3)C14—H140.9300
C3—C41.375 (3)C15—H150.9300
C4—C51.370 (4)C18—H18A0.9600
C5—C61.378 (3)C18—H18B0.9600
C8—C91.4996 (19)C18—H18C0.9600
C1—N1—C7125.98 (17)H9A—C9—H9C109.00
C7—N2—C8128.41 (16)C8—C9—H9A109.00
C7—N1—H1117.00H9B—C9—H9C109.00
C1—N1—H1117.00C8—C9—H9C109.00
C8—N2—H2A116.00H9A—C9—H9B109.00
C7—N2—H2A116.00C8—C9—H9B109.00
C10—N3—C16126.30 (11)C11—C10—C15120.67 (17)
C16—N4—C17128.62 (16)N3—C10—C11121.43 (18)
C16—N3—H3A117.00N3—C10—C15117.80 (17)
C10—N3—H3A117.00C10—C11—C12119.3 (2)
C17—N4—H4A116.00C11—C12—C13120.1 (2)
C16—N4—H4A116.00C12—C13—C14120.2 (2)
C2—C1—C6119.87 (15)C13—C14—C15120.5 (3)
N1—C1—C2118.32 (15)C10—C15—C14119.2 (2)
N1—C1—C6121.61 (15)S2—C16—N3125.50 (11)
C1—C2—C3119.88 (17)S2—C16—N4118.07 (13)
C2—C3—C4120.3 (2)N3—C16—N4116.42 (14)
C3—C4—C5119.36 (19)O2—C17—C18123.18 (17)
C4—C5—C6121.01 (18)N4—C17—C18114.25 (16)
C1—C6—C5119.54 (17)O2—C17—N4122.57 (16)
N1—C7—N2116.73 (18)C10—C11—H11120.00
S1—C7—N2117.66 (14)C12—C11—H11120.00
S1—C7—N1125.58 (14)C11—C12—H12120.00
O1—C8—N2122.67 (17)C13—C12—H12120.00
N2—C8—C9114.58 (15)C12—C13—H13120.00
O1—C8—C9122.74 (17)C14—C13—H13120.00
C3—C2—H2120.00C13—C14—H14120.00
C1—C2—H2120.00C15—C14—H14120.00
C4—C3—H3120.00C10—C15—H15120.00
C2—C3—H3120.00C14—C15—H15120.00
C3—C4—H4120.00C17—C18—H18A109.00
C5—C4—H4120.00C17—C18—H18B109.00
C6—C5—H5120.00C17—C18—H18C109.00
C4—C5—H5119.00H18A—C18—H18B109.00
C1—C6—H6120.00H18A—C18—H18C109.00
C5—C6—H6120.00H18B—C18—H18C109.00
C7—N1—C1—C2133.6 (2)C6—C1—C2—C30.4 (3)
C7—N1—C1—C651.6 (3)N1—C1—C6—C5175.2 (2)
C1—N1—C7—S15.7 (3)C2—C1—C6—C50.5 (3)
C1—N1—C7—N2176.57 (16)N1—C1—C2—C3174.48 (19)
C8—N2—C7—S1173.67 (16)C1—C2—C3—C40.6 (3)
C8—N2—C7—N14.2 (3)C2—C3—C4—C50.2 (4)
C7—N2—C8—O13.3 (3)C3—C4—C5—C61.2 (4)
C7—N2—C8—C9176.44 (16)C4—C5—C6—C11.3 (4)
C10—N3—C16—S21.0 (2)N3—C10—C11—C12175.39 (18)
C16—N3—C10—C1162.9 (2)C15—C10—C11—C120.9 (3)
C16—N3—C10—C15120.69 (19)N3—C10—C15—C14176.23 (18)
C10—N3—C16—N4177.67 (15)C11—C10—C15—C140.2 (3)
C16—N4—C17—C18177.93 (19)C10—C11—C12—C131.3 (4)
C17—N4—C16—S2176.84 (17)C11—C12—C13—C141.1 (4)
C17—N4—C16—N34.4 (3)C12—C13—C14—C150.4 (4)
C16—N4—C17—O21.8 (3)C13—C14—C15—C100.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.972.662 (2)136
N1—H1···O2i0.862.463.1967 (19)143
N2—H2A···S2ii0.862.643.4931 (17)170
N3—H3A···O20.861.972.6633 (7)137
N3—H3A···O1i0.862.423.1418 (18)142
N4—H4A···S1ii0.862.573.4150 (18)168
C18—H18B···S1ii0.962.833.594 (3)137
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC9H10N2OS
Mr194.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.1911 (2), 22.5480 (4), 8.9736 (2)
β (°) 112.449 (1)
V3)1905.77 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.35 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.915, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
16643, 4679, 3626
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.05
No. of reflections4679
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.972.662 (2)136
N1—H1···O2i0.862.463.1967 (19)143
N2—H2A···S2ii0.862.643.4931 (17)170
N3—H3A···O20.861.972.6633 (7)137
N3—H3A···O1i0.862.423.1418 (18)142
N4—H4A···S1ii0.862.573.4150 (18)168
C18—H18B···S1ii0.962.833.594 (3)137
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOthman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds