organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholin-4-ium hydrogen tartrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 22 December 2011; accepted 26 December 2011; online 7 January 2012)

In the title mol­ecular salt, C4H10NO+·C4H5O6, the morpholinium cation adopts a chair conformation. The conformation of the C—C—C—C backbone of the monotartrate anion is close to anti [torsion angle = 173.18 (17)°], which is supported by two intra­molecular O—H⋯O hydrogen bonds. In the crystal, the components are linked by N—H—O and O—H—O hydrogen bonds, generating (001) sheets.

Related literature

For a related structure, see: Ruble et al. (1976[Ruble, J. R., Hite, G. & Soares, J. R. (1976). Acta Cryst. B32, 136-140.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C4H5O6

  • Mr = 237.21

  • Orthorhombic, P 21 21 21

  • a = 7.2601 (15) Å

  • b = 9.1716 (18) Å

  • c = 16.283 (3) Å

  • V = 1084.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.954, Tmax = 0.966

  • 8960 measured reflections

  • 1903 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.097

  • S = 1.17

  • 1903 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 2.05 2.918 (3) 162
N1—H1B⋯O2ii 0.90 1.95 2.790 (3) 154
O1—H1⋯O2 0.82 2.09 2.600 (2) 120
O1—H1⋯O4iii 0.82 2.40 3.068 (2) 139
O5—H5⋯O3iv 0.82 1.73 2.529 (2) 165
O6—H6⋯O4 0.82 2.20 2.674 (2) 117
O6—H6⋯O1v 0.82 2.24 2.996 (2) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Ruble et al. (1976).

Experimental top

0.87 g (0.01 mol) of morpholine was firstly dissolved in 30 ml of ethanol, to which 1.50 g (0.01 mol) of tartaric acid was added at ambient temperature. Colourless blocks were obtained by the slow evaporation of the above solution after 3 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement top

The absolute structure is indeterminate based on the present model. H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N)] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis. Intermolecular interactions are shown as dashed lines.
Morpholin-4-ium hydrogen tartrate top
Crystal data top
C4H10NO+·C4H5O6F(000) = 504
Mr = 237.21Dx = 1.453 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1903 reflections
a = 7.2601 (15) Åθ = 3.4–26.4°
b = 9.1716 (18) ŵ = 0.13 mm1
c = 16.283 (3) ÅT = 293 K
V = 1084.2 (4) Å3Block, colourless
Z = 40.36 × 0.32 × 0.28 mm
Data collection top
Rigaku Mercury2
diffractometer
1747 reflections with I > \2s(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.954, Tmax = 0.966l = 1919
8960 measured reflections3 standard reflections every 180 reflections
1903 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.0989P]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max = 0.095
146 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C4H10NO+·C4H5O6V = 1084.2 (4) Å3
Mr = 237.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2601 (15) ŵ = 0.13 mm1
b = 9.1716 (18) ÅT = 293 K
c = 16.283 (3) Å0.36 × 0.32 × 0.28 mm
Data collection top
Rigaku Mercury2
diffractometer
1747 reflections with I > \2s(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.060
Tmin = 0.954, Tmax = 0.9663 standard reflections every 180 reflections
8960 measured reflections intensity decay: none
1903 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.17Δρmax = 0.14 e Å3
1903 reflectionsΔρmin = 0.20 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.3787 (3)0.3058 (2)0.55071 (10)0.0542 (5)
N10.4758 (3)0.4978 (2)0.68097 (11)0.0426 (5)
H1A0.43820.44800.72560.051*
H1B0.52490.58270.69790.051*
C10.3161 (4)0.5269 (3)0.62661 (15)0.0510 (7)
H1C0.35410.58820.58110.061*
H1D0.22100.57800.65700.061*
C20.2413 (4)0.3847 (3)0.59447 (15)0.0508 (7)
H2A0.19730.32620.64000.061*
H2B0.13780.40390.55840.061*
C30.5307 (4)0.2735 (3)0.60333 (15)0.0519 (7)
H3A0.62190.21780.57310.062*
H3B0.48850.21430.64900.062*
C40.6178 (4)0.4113 (3)0.63583 (16)0.0504 (7)
H4A0.71860.38710.67250.060*
H4B0.66680.46840.59070.060*
O10.4383 (2)0.75847 (19)0.31549 (10)0.0494 (5)
H10.35310.77810.28430.074*
O20.08530 (19)0.71085 (17)0.31349 (8)0.0358 (4)
O30.08075 (18)0.60421 (18)0.43779 (9)0.0394 (4)
O40.73405 (19)0.46475 (19)0.31136 (9)0.0418 (4)
O50.73379 (19)0.58152 (19)0.43315 (9)0.0410 (4)
H50.84590.58150.42690.062*
O60.3670 (2)0.44104 (19)0.31002 (10)0.0474 (5)
H60.44830.41050.27960.071*
C50.6557 (3)0.5186 (2)0.36993 (13)0.0312 (5)
C60.4477 (3)0.5161 (3)0.37717 (12)0.0304 (5)
H6A0.41450.46520.42800.036*
C70.3714 (3)0.6722 (2)0.38132 (13)0.0304 (5)
H70.40820.71680.43350.036*
C80.1603 (3)0.6624 (2)0.37789 (13)0.0284 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0728 (12)0.0500 (12)0.0397 (9)0.0035 (11)0.0084 (9)0.0083 (9)
N10.0568 (12)0.0357 (12)0.0351 (10)0.0088 (10)0.0062 (9)0.0021 (9)
C10.0662 (17)0.0440 (17)0.0427 (13)0.0129 (14)0.0084 (12)0.0050 (12)
C20.0513 (15)0.0540 (18)0.0472 (14)0.0009 (14)0.0056 (12)0.0016 (12)
C30.0590 (16)0.0467 (18)0.0499 (15)0.0103 (14)0.0012 (13)0.0094 (13)
C40.0462 (15)0.0577 (18)0.0472 (14)0.0024 (14)0.0061 (12)0.0044 (13)
O10.0317 (8)0.0551 (12)0.0614 (11)0.0088 (8)0.0021 (8)0.0244 (9)
O20.0332 (8)0.0366 (9)0.0377 (8)0.0004 (7)0.0087 (7)0.0026 (7)
O30.0229 (8)0.0569 (11)0.0384 (8)0.0009 (7)0.0019 (7)0.0068 (8)
O40.0298 (8)0.0526 (11)0.0429 (9)0.0040 (8)0.0065 (7)0.0073 (8)
O50.0211 (7)0.0579 (11)0.0441 (9)0.0001 (7)0.0015 (7)0.0070 (8)
O60.0299 (8)0.0554 (11)0.0568 (10)0.0005 (8)0.0002 (8)0.0227 (9)
C50.0257 (10)0.0330 (13)0.0349 (11)0.0021 (10)0.0013 (9)0.0033 (10)
C60.0255 (10)0.0337 (13)0.0318 (11)0.0008 (10)0.0023 (8)0.0002 (10)
C70.0244 (10)0.0323 (13)0.0344 (11)0.0025 (10)0.0003 (8)0.0031 (10)
C80.0255 (10)0.0245 (12)0.0351 (11)0.0000 (10)0.0015 (9)0.0034 (10)
Geometric parameters (Å, º) top
O7—C21.423 (3)C4—H4B0.9700
O7—C31.428 (3)O1—C71.418 (2)
N1—C11.483 (3)O1—H10.8203
N1—C41.494 (3)O2—C81.263 (2)
N1—H1A0.9006O3—C81.253 (2)
N1—H1B0.8996O4—C51.216 (2)
C1—C21.507 (4)O5—C51.309 (2)
C1—H1C0.9700O5—H50.8200
C1—H1D0.9700O6—C61.419 (2)
C2—H2A0.9700O6—H60.8198
C2—H2B0.9700C5—C61.515 (3)
C3—C41.510 (4)C6—C71.536 (3)
C3—H3A0.9700C6—H6A0.9800
C3—H3B0.9700C7—C81.536 (3)
C4—H4A0.9700C7—H70.9800
C2—O7—C3110.29 (17)N1—C4—H4A109.9
C1—N1—C4109.97 (18)C3—C4—H4A109.9
C1—N1—H1A109.6N1—C4—H4B109.9
C4—N1—H1A109.7C3—C4—H4B109.9
C1—N1—H1B109.7H4A—C4—H4B108.3
C4—N1—H1B109.7C7—O1—H1109.4
H1A—N1—H1B108.2C5—O5—H5109.4
N1—C1—C2109.5 (2)C6—O6—H6109.5
N1—C1—H1C109.8O4—C5—O5126.37 (18)
C2—C1—H1C109.8O4—C5—C6121.5 (2)
N1—C1—H1D109.8O5—C5—C6112.16 (18)
C2—C1—H1D109.8O6—C6—C5111.03 (17)
H1C—C1—H1D108.2O6—C6—C7109.70 (17)
O7—C2—C1111.2 (2)C5—C6—C7110.44 (18)
O7—C2—H2A109.4O6—C6—H6A108.5
C1—C2—H2A109.4C5—C6—H6A108.5
O7—C2—H2B109.4C7—C6—H6A108.5
C1—C2—H2B109.4O1—C7—C6111.28 (16)
H2A—C2—H2B108.0O1—C7—C8110.32 (17)
O7—C3—C4111.1 (2)C6—C7—C8107.67 (18)
O7—C3—H3A109.4O1—C7—H7109.2
C4—C3—H3A109.4C6—C7—H7109.2
O7—C3—H3B109.4C8—C7—H7109.2
C4—C3—H3B109.4O3—C8—O2126.69 (18)
H3A—C3—H3B108.0O3—C8—C7117.18 (18)
N1—C4—C3109.1 (2)O2—C8—C7116.10 (19)
C4—N1—C1—C256.0 (3)O5—C5—C6—C761.0 (2)
C3—O7—C2—C160.4 (3)O6—C6—C7—O170.5 (2)
N1—C1—C2—O758.4 (3)C5—C6—C7—O152.2 (2)
C2—O7—C3—C460.4 (3)O6—C6—C7—C850.5 (2)
C1—N1—C4—C355.9 (3)C5—C6—C7—C8173.18 (17)
O7—C3—C4—N158.0 (3)O1—C7—C8—O3171.64 (18)
O4—C5—C6—O61.9 (3)C6—C7—C8—O366.7 (2)
O5—C5—C6—O6177.08 (17)O1—C7—C8—O210.1 (3)
O4—C5—C6—C7120.0 (2)C6—C7—C8—O2111.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.902.052.918 (3)162
N1—H1B···O2ii0.901.952.790 (3)154
O1—H1···O20.822.092.600 (2)120
O1—H1···O4iii0.822.403.068 (2)139
O5—H5···O3iv0.821.732.529 (2)165
O6—H6···O40.822.202.674 (2)117
O6—H6···O1v0.822.242.996 (2)153
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H10NO+·C4H5O6
Mr237.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.2601 (15), 9.1716 (18), 16.283 (3)
V3)1084.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.954, 0.966
No. of measured, independent and
observed [I > \2s(I)] reflections
8960, 1903, 1747
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.17
No. of reflections1903
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.902.052.918 (3)162
N1—H1B···O2ii0.901.952.790 (3)154
O1—H1···O20.822.092.600 (2)120
O1—H1···O4iii0.822.403.068 (2)139
O5—H5···O3iv0.821.732.529 (2)165
O6—H6···O40.822.202.674 (2)117
O6—H6···O1v0.822.242.996 (2)153
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRuble, J. R., Hite, G. & Soares, J. R. (1976). Acta Cryst. B32, 136–140.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds