organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3-(4-chloro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143 701, Republic of Korea
*Correspondence e-mail: sampath@konkuk.ac.kr;sams76@gmail.com

(Received 28 December 2011; accepted 8 January 2012; online 18 January 2012)

In the title compound, C8H7ClN4S, the benzene ring is statistically disordered over two conformations rotated about the Cl—C⋯C—C axis, which subtend dihedral angles of 24.7 (3) and 9.9 (2) ° with respect to the triazole ring. An intra­molecular C—H⋯N close contact occurs. In the crystal, N—H⋯N and N—H⋯S hydrogen bonds link the mol­ecules into (001) sheets: R22(8) and R22(10) graph-set motifs result. Weak C—H⋯N hydrogen bonds and aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.681 (7) Å] complete the structure.

Related literature

For a related structure and background references, see: Natarajan & Mathews (2011[Natarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o2828.]). For a related structure, see: Ambalavanan et al. (2003[Ambalavanan, P., Palani, K., Ponnuswamy, M. N., Thirumuruhan, R. A., Yathirajan, S. H., Prabhuswamy, B., Raju, C. R., Nagaraja, P. & Mohana, K. N. (2003). Mol. Cryst. Liq. Cryst. 393, 67-73.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClN4S

  • Mr = 226.69

  • Triclinic, [P \overline 1]

  • a = 6.0765 (9) Å

  • b = 8.0268 (7) Å

  • c = 10.9873 (16) Å

  • α = 72.501 (10)°

  • β = 87.597 (10)°

  • γ = 67.88 (2)°

  • V = 471.94 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.35 mm−1

  • T = 293 K

  • 0.24 × 0.18 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (SHELXA; Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Tmin = 0.146, Tmax = 0.618

  • 1912 measured reflections

  • 1818 independent reflections

  • 1670 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.236

  • S = 1.09

  • 1818 reflections

  • 173 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4B—H4B⋯N4 0.93 2.32 2.98 128
N3—H3⋯S1i 0.86 2.55 3.332 (3) 152
C5B—H5B⋯N4ii 0.93 2.72 3.582 (8) 155
C8A—H8A⋯N4iii 0.93 2.53 3.416 (9) 158
C7B—H7B⋯N2iv 0.93 2.64 3.541 (10) 162
N4—H4C⋯S1v 0.91 (6) 2.70 (6) 3.552 (4) 155 (5)
N4—H4D⋯N2vi 0.96 (7) 2.42 (7) 3.349 (5) 164 (5)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+2, -y+2, -z; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms, 1996[Harms, K. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

As part of our onging studies of 1,2,4-triazole derivatives (Natarajan & Mathews, 2011), we now describe the title compound.

The title molecule (Fig.1) contains the rings 1,2,4-triazole and 4-chlorophenyl. All the bond lengths and bond angles are well agreed with previously reported structure (Ambalavanan et al., 2003; Natarajan and Mathews, 2011). The phenyl ring substituted on the atom C2 shows rotational disorder by the atoms of C4, C5, C7 & C8. The rotational disorder of phenyl ring results in two phenyl ring orientations A (C3/C4A/C5A/C6/C7A/C8A) and B (C3/C4B/C5B/CB/C7B/C8B) with respect to 1,2,4-triazole ring. The dihedral angles of these phenyl rings with triazole moiety are 24.7 (3) and 9.9 (2)°, respectively for phenyl rings A and B.

The packing diagram of the title compound viewed down a axis is shown in Fig. 2. The crystal structure is stabilized by the intra and intermolecular hydrogen bonds namely N—H···N, C—H···N and N—H···S. One of them (N—H···S) is involved in self-complementary interactions of triazole rings and forms R22(8) and R22(10) types graph set motifs. The motif, R22(10) is formed by the dimer interactions between the symmetry related 1,2,4-triazole-3-thione moieties and it is connected by the motif R22(8) along the b axis in the unit cell packing. In addition, three π···π weak interactions {Cg1···Cg1= 3.681 (7) Å, Cg1···Cg2= 3.691 (7)Å & Cg2···Cg2 = 3.701 (7)Å (2 - x, 1 - y, -z); Cg is the centroid of the rings; Cg1= C3/C4A/C5A/C6/C7A/C8A and Cg2= C3/C4B/C5B/C6/C7B/C8B} are also helping to consolidate the molecules in crystal packing. The detailed geometry of the non-bonded interactions is presented in Table 1.

Related literature top

For a related structure and background references, see: Natarajan & Mathews (2011). For a related structure, see: Ambalavanan et al. (2003).

Experimental top

A mixture of β-4-chlorophenyldithiocarbazinate potassium salt (0.1 mol) and hydrazine hydrate (0.25 mol) was heated on an oil-bath at 150° C for 5 h (until evolution of H2S gas in the reaction). The reaction mixture was then cooled and poured into the cold water and then acidified with conc. HCl. The filtered product was washed extensively with cold water and recrystallized using ethanol to yield yellow needles.

Refinement top

The primary amine H atoms were derived from the Fourier map and the remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic Hs and for N—H = 0.86 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom for the aromatic C—H and N—H hydrogen atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with displacement ellipsoid drawn at 30% probability level.
[Figure 2] Fig. 2. A unit cell packing of the crystal structure of the title compound viewed down a axis. Dashed lines are indicating the hydrogen bonds between the molecules.
4-Amino-3-(4-chlorophenyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C8H7ClN4SZ = 2
Mr = 226.69F(000) = 232
Triclinic, P1Dx = 1.595 Mg m3
a = 6.0765 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.0268 (7) ÅCell parameters from 25 reflections
c = 10.9873 (16) Åθ = 1–60°
α = 72.501 (10)°µ = 5.35 mm1
β = 87.597 (10)°T = 293 K
γ = 67.88 (2)°Needle, yellow
V = 471.94 (12) Å30.24 × 0.18 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1670 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 72.5°, θmin = 4.2°
ω scansh = 67
Absorption correction: part of the refinement model (ΔF)
(SHELXA; Sheldrick, 2008)
k = 99
Tmin = 0.146, Tmax = 0.618l = 913
1912 measured reflections3 standard reflections every 60 min
1818 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.236 w = 1/[σ2(Fo2) + (0.1913P)2 + 0.1469P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1818 reflectionsΔρmax = 0.62 e Å3
173 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (8)
Crystal data top
C8H7ClN4Sγ = 67.88 (2)°
Mr = 226.69V = 471.94 (12) Å3
Triclinic, P1Z = 2
a = 6.0765 (9) ÅCu Kα radiation
b = 8.0268 (7) ŵ = 5.35 mm1
c = 10.9873 (16) ÅT = 293 K
α = 72.501 (10)°0.24 × 0.18 × 0.12 mm
β = 87.597 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1670 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(SHELXA; Sheldrick, 2008)
Rint = 0.054
Tmin = 0.146, Tmax = 0.6183 standard reflections every 60 min
1912 measured reflections intensity decay: none
1818 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.62 e Å3
1818 reflectionsΔρmin = 0.51 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.91511 (17)0.68117 (13)0.30339 (8)0.0585 (5)
S10.31850 (16)0.79307 (13)0.50686 (8)0.0534 (5)
N10.5022 (5)0.7466 (4)0.2844 (2)0.0404 (7)
N20.7683 (6)0.8756 (5)0.2550 (3)0.0569 (9)
N30.6640 (6)0.8820 (5)0.3677 (3)0.0596 (9)
H30.70320.92920.41960.072*
N40.3603 (7)0.6528 (5)0.2662 (3)0.0541 (8)
C10.4998 (6)0.8091 (5)0.3885 (3)0.0453 (8)
C20.6627 (5)0.7938 (4)0.2044 (3)0.0407 (7)
C30.7171 (5)0.7637 (4)0.0791 (3)0.0395 (7)
C4A0.5509 (19)0.7474 (19)0.0004 (9)0.0404 (19)0.50 (2)
H4A0.40410.74940.02910.048*0.50 (2)
C5A0.6105 (19)0.7284 (18)0.1214 (9)0.048 (2)0.50 (2)
H5A0.50200.72270.17570.057*0.50 (2)
C4B0.631 (2)0.661 (2)0.0331 (10)0.041 (2)0.50 (2)
H4B0.53030.60720.07990.050*0.50 (2)
C5B0.694 (2)0.636 (2)0.0856 (10)0.047 (3)0.50 (2)
H5B0.64010.56060.11560.056*0.50 (2)
C60.8321 (6)0.7185 (4)0.1578 (3)0.0437 (8)
C7A0.9891 (19)0.737 (2)0.0863 (8)0.047 (2)0.50 (2)
H7A1.13380.73840.11680.057*0.50 (2)
C8A0.9324 (19)0.755 (2)0.0335 (8)0.047 (2)0.50 (2)
H8A1.04510.76080.08500.057*0.50 (2)
C7B0.9186 (19)0.831 (2)0.1110 (9)0.046 (2)0.50 (2)
H7B1.01540.88800.15920.056*0.50 (2)
C8B0.8574 (18)0.856 (2)0.0063 (8)0.041 (2)0.50 (2)
H8B0.90850.93210.03710.050*0.50 (2)
H4C0.394 (11)0.538 (9)0.327 (6)0.095 (19)*
H4D0.198 (12)0.724 (9)0.277 (6)0.096 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0650 (7)0.0717 (7)0.0365 (6)0.0151 (5)0.0119 (4)0.0289 (4)
S10.0548 (7)0.0735 (7)0.0408 (6)0.0209 (5)0.0126 (4)0.0356 (5)
N10.0407 (14)0.0474 (13)0.0337 (13)0.0068 (10)0.0014 (10)0.0258 (11)
N20.0591 (18)0.090 (2)0.0414 (16)0.0351 (16)0.0129 (13)0.0406 (15)
N30.0627 (19)0.098 (2)0.0446 (16)0.0400 (17)0.0151 (14)0.0490 (17)
N40.0587 (19)0.073 (2)0.0469 (17)0.0299 (15)0.0138 (14)0.0360 (15)
C10.0451 (17)0.0584 (17)0.0326 (15)0.0081 (14)0.0023 (12)0.0295 (13)
C20.0359 (15)0.0500 (16)0.0358 (15)0.0072 (12)0.0010 (11)0.0238 (12)
C30.0373 (15)0.0435 (14)0.0330 (14)0.0024 (11)0.0001 (11)0.0213 (11)
C4A0.033 (4)0.049 (5)0.035 (4)0.003 (4)0.001 (3)0.023 (3)
C5A0.050 (4)0.051 (5)0.033 (4)0.005 (4)0.003 (3)0.018 (4)
C4B0.041 (4)0.053 (6)0.034 (4)0.012 (4)0.008 (3)0.027 (4)
C5B0.052 (5)0.057 (6)0.038 (4)0.016 (5)0.004 (4)0.030 (4)
C60.0419 (16)0.0468 (15)0.0338 (16)0.0026 (13)0.0028 (12)0.0188 (12)
C7A0.047 (4)0.054 (6)0.040 (4)0.014 (4)0.003 (3)0.020 (4)
C8A0.045 (4)0.055 (6)0.045 (4)0.012 (4)0.004 (3)0.028 (4)
C7B0.045 (4)0.048 (6)0.040 (4)0.011 (4)0.010 (3)0.016 (4)
C8B0.041 (4)0.048 (6)0.042 (4)0.012 (4)0.006 (3)0.030 (4)
Geometric parameters (Å, º) top
Cl1—C61.735 (3)C4A—C5A1.410 (9)
S1—C11.675 (3)C4A—H4A0.9300
N1—C21.368 (4)C5A—C61.368 (9)
N1—C11.378 (4)C5A—H5A0.9300
N1—N41.394 (4)C4B—C5B1.395 (9)
N2—C21.311 (4)C4B—H4B0.9300
N2—N31.373 (4)C5B—C61.346 (9)
N3—C11.315 (5)C5B—H5B0.9300
N3—H30.8572C6—C7A1.339 (9)
N4—H4C0.91 (6)C6—C7B1.421 (10)
N4—H4D0.96 (7)C7A—C8A1.381 (10)
C2—C31.471 (4)C7A—H7A0.9300
C3—C4B1.344 (8)C8A—H8A0.9300
C3—C8A1.365 (9)C7B—C8B1.377 (10)
C3—C8B1.405 (9)C7B—H7B0.9300
C3—C4A1.423 (8)C8B—H8B0.9300
C2—N1—C1108.7 (3)C6—C5A—H5A120.8
C2—N1—N4127.1 (3)C4A—C5A—H5A120.8
C1—N1—N4124.3 (3)C3—C4B—C5B119.3 (7)
C2—N2—N3104.2 (3)C3—C4B—H4B120.4
C1—N3—N2114.0 (3)C5B—C4B—H4B120.4
C1—N3—H3123.3C6—C5B—C4B121.7 (6)
N2—N3—H3122.7C6—C5B—H5B119.1
N1—N4—H4C113 (4)C4B—C5B—H5B119.1
N1—N4—H4D109 (4)C7A—C6—C5B112.0 (5)
H4C—N4—H4D104 (5)C7A—C6—C5A123.0 (5)
N3—C1—N1103.3 (3)C5B—C6—C5A30.8 (4)
N3—C1—S1131.5 (3)C7A—C6—C7B28.6 (3)
N1—C1—S1125.2 (3)C5B—C6—C7B119.2 (5)
N2—C2—N1109.8 (3)C5A—C6—C7B113.4 (5)
N2—C2—C3122.3 (3)C7A—C6—Cl1118.0 (4)
N1—C2—C3127.9 (3)C5B—C6—Cl1121.1 (4)
C4B—C3—C8A110.6 (5)C5A—C6—Cl1119.0 (4)
C4B—C3—C8B121.1 (5)C7B—C6—Cl1119.7 (4)
C8A—C3—C8B30.7 (3)C6—C7A—C8A118.8 (7)
C4B—C3—C4A28.1 (3)C6—C7A—H7A120.6
C8A—C3—C4A117.7 (5)C8A—C7A—H7A120.6
C8B—C3—C4A111.9 (5)C3—C8A—C7A122.4 (6)
C4B—C3—C2122.7 (4)C3—C8A—H8A118.8
C8A—C3—C2119.7 (4)C7A—C8A—H8A118.8
C8B—C3—C2116.1 (4)C8B—C7B—C6119.3 (7)
C4A—C3—C2122.6 (4)C8B—C7B—H7B120.3
C5A—C4A—C3119.5 (6)C6—C7B—H7B120.3
C5A—C4A—H4A120.2C7B—C8B—C3119.3 (6)
C3—C4A—H4A120.2C7B—C8B—H8B120.4
C6—C5A—C4A118.3 (6)C3—C8B—H8B120.4
C2—N2—N3—C10.2 (5)C2—C3—C4B—C5B178.8 (6)
N2—N3—C1—N11.7 (4)C3—C4B—C5B—C62.7 (14)
N2—N3—C1—S1177.0 (3)C4B—C5B—C6—C7A31.8 (11)
C2—N1—C1—N32.5 (3)C4B—C5B—C6—C5A86.1 (12)
N4—N1—C1—N3178.0 (3)C4B—C5B—C6—C7B1.1 (11)
C2—N1—C1—S1176.3 (2)C4B—C5B—C6—Cl1178.4 (7)
N4—N1—C1—S13.2 (4)C4A—C5A—C6—C7A4.1 (11)
N3—N2—C2—N11.4 (4)C4A—C5A—C6—C5B73.4 (10)
N3—N2—C2—C3178.1 (3)C4A—C5A—C6—C7B34.8 (9)
C1—N1—C2—N22.5 (4)C4A—C5A—C6—Cl1176.3 (5)
N4—N1—C2—N2178.0 (3)C5B—C6—C7A—C8A28.2 (10)
C1—N1—C2—C3176.9 (3)C5A—C6—C7A—C8A4.5 (11)
N4—N1—C2—C32.5 (5)C7B—C6—C7A—C8A82.8 (12)
N2—C2—C3—C4B172.1 (9)Cl1—C6—C7A—C8A175.9 (6)
N1—C2—C3—C4B8.5 (9)C4B—C3—C8A—C7A32.1 (10)
N2—C2—C3—C8A24.1 (9)C8B—C3—C8A—C7A84.4 (11)
N1—C2—C3—C8A156.5 (8)C4A—C3—C8A—C7A2.2 (11)
N2—C2—C3—C8B10.5 (7)C2—C3—C8A—C7A176.4 (7)
N1—C2—C3—C8B168.9 (7)C6—C7A—C8A—C33.5 (13)
N2—C2—C3—C4A154.4 (7)C7A—C6—C7B—C8B83.4 (12)
N1—C2—C3—C4A25.0 (8)C5B—C6—C7B—C8B0.8 (10)
C4B—C3—C4A—C5A83.7 (11)C5A—C6—C7B—C8B33.1 (9)
C8A—C3—C4A—C5A1.8 (10)Cl1—C6—C7B—C8B178.1 (5)
C8B—C3—C4A—C5A31.6 (9)C6—C7B—C8B—C32.0 (11)
C2—C3—C4A—C5A176.8 (6)C4B—C3—C8B—C7B3.6 (10)
C3—C4A—C5A—C62.6 (11)C8A—C3—C8B—C7B74.2 (9)
C8A—C3—C4B—C5B28.3 (10)C4A—C3—C8B—C7B33.5 (9)
C8B—C3—C4B—C5B3.9 (11)C2—C3—C8B—C7B178.9 (6)
C4A—C3—C4B—C5B82.2 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4B—H4B···N40.932.322.98128
N3—H3···S1i0.862.553.332 (3)152
C5B—H5B···N4ii0.932.723.582 (8)155
C8A—H8A···N4iii0.932.533.416 (9)158
C7B—H7B···N2iv0.932.643.541 (10)162
N4—H4C···S1v0.91 (6)2.70 (6)3.552 (4)155 (5)
N4—H4D···N2vi0.96 (7)2.42 (7)3.349 (5)164 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y+2, z; (v) x+1, y+1, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H7ClN4S
Mr226.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.0765 (9), 8.0268 (7), 10.9873 (16)
α, β, γ (°)72.501 (10), 87.597 (10), 67.88 (2)
V3)471.94 (12)
Z2
Radiation typeCu Kα
µ (mm1)5.35
Crystal size (mm)0.24 × 0.18 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SHELXA; Sheldrick, 2008)
Tmin, Tmax0.146, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
1912, 1818, 1670
Rint0.054
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.236, 1.09
No. of reflections1818
No. of parameters173
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.51

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms, 1996), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4B—H4B···N40.932.322.98128
N3—H3···S1i0.862.553.332 (3)152
C5B—H5B···N4ii0.932.723.582 (8)155
C8A—H8A···N4iii0.932.533.416 (9)158
C7B—H7B···N2iv0.932.643.541 (10)162
N4—H4C···S1v0.91 (6)2.70 (6)3.552 (4)155 (5)
N4—H4D···N2vi0.96 (7)2.42 (7)3.349 (5)164 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y+2, z; (v) x+1, y+1, z+1; (vi) x1, y, z.
 

References

First citationAmbalavanan, P., Palani, K., Ponnuswamy, M. N., Thirumuruhan, R. A., Yathirajan, S. H., Prabhuswamy, B., Raju, C. R., Nagaraja, P. & Mohana, K. N. (2003). Mol. Cryst. Liq. Cryst. 393, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNatarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o2828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds