organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Hy­dr­oxy­eth­yl)aza­nium­yl]ethanaminium oxalate monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jinyunihao@yahoo.cn

(Received 28 December 2011; accepted 29 December 2011; online 11 January 2012)

In the title hydrated mol­ecular salt, C4H14N2O2+·C2O42−·H2O, the oxalate dianion is almost planar (r.m.s. deviation = 0.020 Å). In the crystal, the components are linked by N—H⋯O(water), N—H⋯O(oxalate) O—H(ammonium)⋯O(oxalate), O—H(water)⋯O(oxalate) and O—H(water)⋯O(ammonium) hydrogen bonds, thereby forming a complex three-dimensional packing motif.

Related literature

For related structures, see: Sakai et al. (2003[Sakai, K., Akiyama, N., Mizota, M., Yokokawa, K. & Yokoyama, Y. (2003). Acta Cryst. E59, m408-m410.]); Kolitsch (2004[Kolitsch, U. (2004). Acta Cryst. C60, m129-m133.]); Cotton et al. (1996[Cotton, F. A., Daniels, L. M., Shang, M., Llusar, R. & Schwotzer, W. (1996). Acta Cryst. C52, 835-838.]); Barnes (2003[Barnes, J. C. (2003). Acta Cryst. E59, o931-o933.]).

[Scheme 1]

Experimental

Crystal data
  • C4H14N2O2+·C2O42−·H2O

  • Mr = 212.21

  • Monoclinic, P 21

  • a = 5.7311 (11) Å

  • b = 13.136 (3) Å

  • c = 6.7373 (13) Å

  • β = 102.52 (3)°

  • V = 495.16 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.489, Tmax = 1.000

  • 5068 measured reflections

  • 2261 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.086

  • S = 0.97

  • 2261 reflections

  • 135 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1Wi 0.89 1.96 2.823 (2) 164
N1—H1B⋯O3ii 0.89 2.12 2.8769 (19) 143
N1—H1B⋯O4ii 0.89 2.11 2.818 (2) 136
N1—H1F⋯O2 0.89 1.82 2.707 (2) 172
N2—H2A⋯O4iii 0.90 1.80 2.688 (2) 170
N2—H2D⋯O5iv 0.90 2.16 2.862 (2) 134
N2—H2D⋯O2iv 0.90 2.00 2.773 (2) 143
O1—H1C⋯O3v 0.82 1.94 2.736 (2) 163
O1W—H2W⋯O5iv 0.84 (1) 1.91 (1) 2.753 (2) 178 (2)
O1W—H1W⋯O1vi 0.84 (1) 2.27 (3) 2.968 (2) 141 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x, y, z-1; (iii) x+1, y, z-1; (iv) x+1, y, z; (v) [-x+2, y+{\script{1\over 2}}, -z+1]; (vi) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several crystal structures of oxalate have been reported previously (Sakai et al., 2003; Kolitsch, 2004; Cotton et al., 1996). As an extension of research, we report here the synthesis and the crystal structure of the title complex, (C4H14N2O)2+.(C2O4)2-.H2O.

In the crystal synthesized by Barnes, amine salts with oxalic acid contain the monohydrogenoxalate ion (Barnes, 2003), while the crystal reported here, oxalic acid reacts with alcohol amine to give crystals of the fully deprotonated C2O42- salt as the monohydrate.

The (locally) centrosymmetric anion and one cation are shown in Fig. 1 with the hydrogen bonds listed in Table 1. The water molecules in the compound serve as a connection, i.e., two protonated cations are connected to a water molecule through N—H···O (water) and O—H (water)···O (ammonium) hydrogen-bonds and one anion is linked to the same water molecule via O—H (water)···O (oxalate) hydrogen bonding interactions, the components are further held by O—H (ammonium)···O (oxalate), O—H (water)···O (oxalate) and O—H (water)···O (ammonium) hydrogen-bonding interactions, and thus forms a three-dimensional structure. (Fig.2)

Related literature top

For related structures, see: Sakai et al. (2003); Kolitsch (2004); Cotton et al. (1996); Barnes (2003).

Experimental top

A mixture of C4H12N2O (104.15 mg, 1.00 mmol), C2H2O4 (90.04 mg, 1.00 mmol) and distilled water (5 ml) was stirred a few minutes at room temperature, giving a clear transparent solution. After evaporation for several days, colorless blocks of the title compound were obtained in about 82% yield and filtered and washed with distilled water.

Refinement top

The absolute sturcture is indeterminate based on the present refinement. H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.97 Å, O—H = 0.82 to 0.84 Å and N—H = 0.89 to 0.90 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Intermolecular interactions are shown as dashed lines.
2-[(2-Hydroxyethyl)azaniumyl]ethanaminium oxalate monohydrate top
Crystal data top
C4H14N2O2+·C2O42·H2OF(000) = 228
Mr = 212.21Dx = 1.423 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3450 reflections
a = 5.7311 (11) Åθ = 6.2–55.3°
b = 13.136 (3) ŵ = 0.13 mm1
c = 6.7373 (13) ÅT = 293 K
β = 102.52 (3)°Block, colorless
V = 495.16 (17) Å30.3 × 0.3 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2261 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 77
Tmin = 0.489, Tmax = 1.000k = 1616
5068 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0314P)2]
where P = (Fo2 + 2Fc2)/3
2261 reflections(Δ/σ)max < 0.001
135 parametersΔρmax = 0.22 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
C4H14N2O2+·C2O42·H2OV = 495.16 (17) Å3
Mr = 212.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7311 (11) ŵ = 0.13 mm1
b = 13.136 (3) ÅT = 293 K
c = 6.7373 (13) Å0.3 × 0.3 × 0.2 mm
β = 102.52 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2261 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1853 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.046
5068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.22 e Å3
2261 reflectionsΔρmin = 0.25 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1138 (4)0.63105 (16)0.1821 (3)0.0342 (5)
H1D1.15200.59760.06480.041*
H1E1.07640.70170.14670.041*
C20.9023 (4)0.58091 (12)0.2350 (3)0.0290 (4)
H2B0.88080.60710.36440.035*
H2C0.76070.59800.13280.035*
C30.6935 (4)0.41905 (13)0.2318 (3)0.0256 (4)
H3A0.59150.43470.10070.031*
H3B0.61710.44520.33650.031*
C40.7217 (4)0.30554 (15)0.2545 (3)0.0284 (5)
H4A0.80620.27910.15550.034*
H4B0.81270.28880.38950.034*
C50.2891 (3)0.33640 (13)0.6829 (2)0.0213 (4)
C60.1213 (3)0.39951 (13)0.7871 (3)0.0234 (4)
H1W0.472 (5)0.541 (3)0.636 (3)0.117 (14)*
H2W0.702 (3)0.522 (2)0.723 (3)0.057 (9)*
N10.4808 (3)0.26039 (11)0.2219 (2)0.0244 (4)
H1A0.49310.19310.23510.037*
H1B0.39920.27580.09750.037*
H1F0.40480.28510.31340.037*
N20.9269 (3)0.46896 (11)0.2484 (2)0.0210 (3)
H2A0.99480.44650.14800.025*
H2D1.02350.45210.36780.025*
O11.3118 (3)0.62633 (11)0.3457 (2)0.0453 (4)
H1C1.41240.66790.32850.068*
O20.2737 (3)0.35255 (12)0.49926 (18)0.0391 (4)
O30.4216 (3)0.27372 (10)0.78762 (18)0.0320 (3)
O40.1307 (3)0.38042 (10)0.96855 (18)0.0333 (3)
O50.0084 (3)0.46250 (12)0.6815 (2)0.0429 (4)
O1W0.5752 (3)0.54801 (12)0.7448 (2)0.0425 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (13)0.0278 (9)0.0369 (10)0.0049 (9)0.0084 (9)0.0046 (8)
C20.0263 (11)0.0223 (9)0.0374 (10)0.0008 (8)0.0044 (8)0.0020 (8)
C30.0216 (11)0.0251 (9)0.0314 (10)0.0002 (8)0.0081 (8)0.0009 (7)
C40.0241 (11)0.0250 (9)0.0375 (11)0.0007 (9)0.0102 (9)0.0023 (8)
C50.0188 (10)0.0222 (8)0.0227 (8)0.0017 (7)0.0045 (7)0.0004 (7)
C60.0231 (11)0.0248 (9)0.0220 (8)0.0004 (8)0.0039 (8)0.0028 (7)
N10.0279 (10)0.0218 (7)0.0242 (7)0.0011 (7)0.0071 (7)0.0015 (6)
N20.0213 (9)0.0226 (7)0.0192 (7)0.0018 (7)0.0047 (6)0.0004 (6)
O10.0344 (9)0.0474 (9)0.0505 (9)0.0138 (8)0.0015 (7)0.0129 (7)
O20.0393 (10)0.0576 (10)0.0234 (7)0.0198 (8)0.0138 (6)0.0067 (6)
O30.0358 (9)0.0320 (7)0.0290 (7)0.0148 (7)0.0086 (6)0.0043 (5)
O40.0371 (9)0.0424 (8)0.0234 (6)0.0127 (7)0.0128 (6)0.0031 (6)
O50.0495 (11)0.0490 (8)0.0305 (7)0.0281 (8)0.0091 (7)0.0080 (7)
O1W0.0448 (11)0.0345 (8)0.0478 (10)0.0076 (8)0.0091 (8)0.0079 (7)
Geometric parameters (Å, º) top
C1—O11.402 (2)C5—O31.233 (2)
C1—C21.489 (3)C5—O21.239 (2)
C1—H1D0.9700C5—C61.548 (3)
C1—H1E0.9700C6—O51.230 (2)
C2—N21.478 (2)C6—O41.238 (2)
C2—H2B0.9700N1—H1A0.8900
C2—H2C0.9700N1—H1B0.8900
C3—N21.472 (2)N1—H1F0.8900
C3—C41.504 (3)N2—H2A0.9000
C3—H3A0.9700N2—H2D0.9000
C3—H3B0.9700O1—H1C0.8200
C4—N11.475 (3)O1W—H1W0.838 (10)
C4—H4A0.9700O1W—H2W0.841 (10)
C4—H4B0.9700
O1—C1—C2110.75 (16)C3—C4—H4B110.1
O1—C1—H1D109.5H4A—C4—H4B108.4
C2—C1—H1D109.5O3—C5—O2125.95 (17)
O1—C1—H1E109.5O3—C5—C6117.66 (14)
C2—C1—H1E109.5O2—C5—C6116.37 (15)
H1D—C1—H1E108.1O5—C6—O4126.77 (19)
N2—C2—C1112.53 (17)O5—C6—C5117.06 (15)
N2—C2—H2B109.1O4—C6—C5116.18 (14)
C1—C2—H2B109.1C4—N1—H1A109.5
N2—C2—H2C109.1C4—N1—H1B109.5
C1—C2—H2C109.1H1A—N1—H1B109.5
H2B—C2—H2C107.8C4—N1—H1F109.5
N2—C3—C4110.98 (15)H1A—N1—H1F109.5
N2—C3—H3A109.4H1B—N1—H1F109.5
C4—C3—H3A109.4C3—N2—C2111.45 (14)
N2—C3—H3B109.4C3—N2—H2A109.3
C4—C3—H3B109.4C2—N2—H2A109.3
H3A—C3—H3B108.0C3—N2—H2D109.3
N1—C4—C3107.88 (16)C2—N2—H2D109.3
N1—C4—H4A110.1H2A—N2—H2D108.0
C3—C4—H4A110.1C1—O1—H1C109.5
N1—C4—H4B110.1H1W—O1W—H2W106 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.891.962.823 (2)164
N1—H1B···O3ii0.892.122.8769 (19)143
N1—H1B···O4ii0.892.112.818 (2)136
N1—H1F···O20.891.822.707 (2)172
N2—H2A···O4iii0.901.802.688 (2)170
N2—H2D···O5iv0.902.162.862 (2)134
N2—H2D···O2iv0.902.002.773 (2)143
O1—H1C···O3v0.821.942.736 (2)163
O1W—H2W···O5iv0.84 (1)1.91 (1)2.753 (2)178 (2)
O1W—H1W···O1vi0.84 (1)2.27 (3)2.968 (2)141 (4)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y, z; (v) x+2, y+1/2, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formulaC4H14N2O2+·C2O42·H2O
Mr212.21
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.7311 (11), 13.136 (3), 6.7373 (13)
β (°) 102.52 (3)
V3)495.16 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.489, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5068, 2261, 1853
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 0.97
No. of reflections2261
No. of parameters135
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.891.962.823 (2)164
N1—H1B···O3ii0.892.122.8769 (19)143
N1—H1B···O4ii0.892.112.818 (2)136
N1—H1F···O20.891.822.707 (2)172
N2—H2A···O4iii0.901.802.688 (2)170
N2—H2D···O5iv0.902.162.862 (2)134
N2—H2D···O2iv0.902.002.773 (2)143
O1—H1C···O3v0.821.942.736 (2)163
O1W—H2W···O5iv0.841 (10)1.912 (10)2.753 (2)178 (2)
O1W—H1W···O1vi0.838 (10)2.27 (3)2.968 (2)141 (4)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y, z; (v) x+2, y+1/2, z+1; (vi) x1, y, z.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Center, Southeast University, for support.

References

First citationBarnes, J. C. (2003). Acta Cryst. E59, o931–o933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCotton, F. A., Daniels, L. M., Shang, M., Llusar, R. & Schwotzer, W. (1996). Acta Cryst. C52, 835–838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKolitsch, U. (2004). Acta Cryst. C60, m129–m133.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakai, K., Akiyama, N., Mizota, M., Yokokawa, K. & Yokoyama, Y. (2003). Acta Cryst. E59, m408–m410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds