organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(N-Cyclo­hexyl­carbamo­yl)benzene­sulfonamide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: waseeq786@gmail.com

(Received 28 December 2011; accepted 6 January 2012; online 14 January 2012)

The asymmetric unit of the title compound, C13H18N2O3S, contains two mol­ecules with similar conformations. In both mol­ecules, the cyclo­hexyl rings adopt chair conformations, with the attached N atom in an equatorial orientation and an intra­molecular N—H⋯O hydrogen bond generates an S(7) ring. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules and a C—H⋯O hydrogen bond is also observed. The crystal studied was a racemic twin.

Related literature

For the biological activity of benzene­sulfonamide derivatives, see: Petrov et al. (2006[Petrov, V., Girichev, G. V., Oberhammer, H., Giricheva, N. I. & Ivanov, S. J. (2006). Org. Chem. 71, 2952-2956.]); Eatedal et al. (2002[Eatedal, H., Aal, A., El-Sabbagh, O. I., Youssif, S. & El-Nabtity, S. M. (2002). Monatsh. Chem. 133, 255-266.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4117.], 2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o367-o371.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O3S

  • Mr = 282.35

  • Orthorhombic, P c a 21

  • a = 16.1869 (5) Å

  • b = 10.8467 (3) Å

  • c = 15.9353 (4) Å

  • V = 2797.83 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.20 × 0.14 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.954, Tmax = 0.981

  • 5929 measured reflections

  • 5929 independent reflections

  • 5451 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.110

  • S = 1.14

  • 5929 reflections

  • 362 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.52 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O4i 0.92 (4) 2.05 (4) 2.935 (4) 161 (4)
N2—H2N⋯O6ii 0.91 (4) 1.96 (4) 2.874 (4) 175 (4)
N3—H32N⋯O2iii 0.88 (4) 2.23 (4) 2.943 (4) 138 (4)
C3—H3⋯O1iv 0.95 2.54 3.254 (4) 132
N1—H12N⋯O3 0.86 (4) 2.18 (4) 2.938 (4) 146 (4)
N3—H31N⋯O6 0.85 (4) 2.09 (4) 2.831 (4) 145 (4)
N4—H4N⋯O3 0.85 (4) 2.11 (4) 2.952 (4) 171 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+1, z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of benzenesulfonamide find wide spread applications for the synthesis of pharmaceutical products which have bactericidal properties, various bioactive agents, artificial fibers, dyes, plasticizers and high molecular weight substances (Petrov et al., 2006). Several pyrazole and oxadiazole derivatives have been reported to exhibit analgesic and anti-inflammatory activities and many drugs containing them are still in use in the market (Eatedal et al., 2002). In continuation of our research on the synthesis of biological active benzothiazine derivatives (Siddiqui et al., 2007) we report the synthesis and crystal structure of the title compound in this article.

There are two independent molecules in an asymmetric unit of the title compound, labeled as molecules A (Fig. 1) and B (Fig. 2) containing the S1 and S2 atoms, respectively. There are insignificant differences in the conformations of the two molecules, e.g., the torsion angles C6–C7–N2–C8 and C19–C20–N4–C21 in molecules A and B are 177.3 (3) and -179.2 (3)°, respectively. In both molecules, the cyclohexyl rings adopt chair conformations with puckering parameters (Cremer & Pople, 1975) in molecules A and B being Q = 0.564 (4) and 0.573 (4) Å, θ = 3.1 (4) and 2.3 (4) ° and ω = 273 (8) and 251 (8) °, respectively. The bond distances and angles in both molecules agree very well with the cortresponding bond distances and angles reported in a closely related compound (Siddiqui et al., 2007).

In the solid state, the molecules A and B are linked with each other via hydrogen bonds involving amino and O-atoms of the sulfonamide groups with N1···O4 = 2.935 (4) and N3···O2 = 2.943 (4) Å. The molecules A are linked into chains involving intermolecular interactions C3···O1 = 3.254 (4) Å. The molecules B do not show any such interactions. The molecules are stabilized by intramolecular interactions of the types N—H···O and C—H···O (Table 1 and Figure 3).

Related literature top

For the biological activity of benzenesulfonamide derivatives, see: Petrov et al. (2006); Eatedal et al. (2002). For related structures, see: Siddiqui et al. (2007, 2008). For ring puckering parameters, see: Cremer & Pople (1975). For related literature [on what subject?], see: Ahmad et al. (2010).

Experimental top

For the synthesis of the title compound, cyclohexylamine and saccharin were used as the starting materials following a reported procedure (Siddiqui et al., 2008). Crystals of the title compound suitable for X-ray crystallographic study were grown from methanol at room temperature; m.p. = 512 – 513 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H = 0.95, 0.99 and 1.00 Å, for aryl, methylene and methine H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(C). The hydrogen atoms bonded to the N-atoms were allowed to refine with Uiso(H) = 1.2Ueq(N). The final difference map was essentially featurless. The crystal was suggested by the program SHELXL (Sheldrick, 2008) to be a racemnic twin with a BASF twin factor 0.523 (8). The Friedel pairs (2644) of reflections were not merged.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule A of the title compound with displacement ellipsoids plotted at 30% probability level.
[Figure 2] Fig. 2. The molecule B of the title compound with displacement ellipsoids plotted at 30% probability level.
[Figure 3] Fig. 3. The unit cell packing diagram of the title compound showing hydrogen bonding interactions drawn with dashed lines. Hydrogen atoms not involved in H-bonds have been excluded for clarity.
2-(N-Cyclohexylcarbamoyl)benzenesulfonamide top
Crystal data top
C13H18N2O3SF(000) = 1200
Mr = 282.35Dx = 1.341 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3423 reflections
a = 16.1869 (5) Åθ = 1.0–27.5°
b = 10.8467 (3) ŵ = 0.24 mm1
c = 15.9353 (4) ÅT = 173 K
V = 2797.83 (13) Å3Prism, pale-yellow
Z = 80.20 × 0.14 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
5929 independent reflections
Radiation source: fine-focus sealed tube5451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 27.4°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2020
Tmin = 0.954, Tmax = 0.981k = 1414
5929 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.009P)2 + 3.8318P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
5929 reflectionsΔρmax = 0.31 e Å3
362 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.52 (8)
Crystal data top
C13H18N2O3SV = 2797.83 (13) Å3
Mr = 282.35Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 16.1869 (5) ŵ = 0.24 mm1
b = 10.8467 (3) ÅT = 173 K
c = 15.9353 (4) Å0.20 × 0.14 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
5929 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5451 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.981Rint = 0.034
5929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110Δρmax = 0.31 e Å3
S = 1.14Δρmin = 0.28 e Å3
5929 reflectionsAbsolute structure: Flack (1983)
362 parametersAbsolute structure parameter: 0.52 (8)
1 restraint
Special details top

Experimental. IR (KBr, max, cm-1) NH2 & NH 3318, 3275; CO 1680; SO2 1320 and 1155; 1H-NMR (300 MHz, Methanol -d4) δ: 1.30–1.75 (m, 10H, cyclohexyl), 3.35 (m, 1H, cyclohexyl-CH), 5.55 (s, 2H, NH2), 7.73–8.13 (m, 4H, C6H4); 13C-NMR δ: 167.5, 137.5, 133.4, 131.9, 131.5, 127.7, 127.3, 45.7, 34.5, 27.3, 22.7

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34082 (5)0.60650 (7)0.55872 (6)0.02820 (16)
S20.25588 (6)0.07073 (7)0.31713 (6)0.03103 (18)
O10.40724 (14)0.5355 (2)0.59198 (15)0.0357 (6)
O20.31913 (17)0.7220 (2)0.59666 (17)0.0440 (7)
O30.36076 (14)0.3676 (2)0.43341 (13)0.0287 (5)
O40.27815 (17)0.1884 (2)0.35130 (19)0.0493 (7)
O50.20767 (16)0.0130 (2)0.36603 (16)0.0394 (6)
O60.21853 (14)0.1570 (2)0.19541 (13)0.0276 (5)
N10.3621 (2)0.6352 (3)0.46194 (19)0.0330 (7)
H11N0.327 (3)0.690 (4)0.437 (2)0.040*
H12N0.369 (3)0.568 (4)0.434 (3)0.040*
N20.35953 (18)0.2310 (2)0.54146 (17)0.0294 (6)
H2N0.335 (2)0.212 (4)0.591 (3)0.035*
N30.2057 (2)0.0976 (3)0.2323 (2)0.0355 (7)
H31N0.201 (3)0.034 (4)0.202 (3)0.043*
H32N0.222 (3)0.163 (4)0.205 (3)0.043*
N40.25528 (18)0.3051 (2)0.28838 (17)0.0260 (6)
H4N0.290 (2)0.325 (3)0.326 (2)0.031*
C10.25169 (19)0.5111 (3)0.5624 (2)0.0257 (6)
C20.1783 (2)0.5611 (3)0.5923 (2)0.0353 (8)
H20.17680.64440.61060.042*
C30.1075 (2)0.4899 (4)0.5954 (3)0.0407 (9)
H30.05710.52480.61460.049*
C40.1101 (2)0.3689 (3)0.5706 (3)0.0392 (8)
H40.06130.32030.57220.047*
C50.1834 (2)0.3174 (3)0.5434 (2)0.0339 (8)
H50.18460.23280.52800.041*
C60.2557 (2)0.3867 (3)0.53812 (19)0.0269 (7)
C70.3311 (2)0.3281 (3)0.5007 (2)0.0262 (7)
C80.4304 (2)0.1578 (3)0.5131 (2)0.0295 (7)
H80.42680.14830.45080.035*
C90.4254 (2)0.0303 (3)0.5529 (3)0.0418 (9)
H9A0.37430.01140.53400.050*
H9B0.42270.03880.61470.050*
C100.5003 (3)0.0486 (4)0.5294 (3)0.0558 (12)
H10A0.49800.12730.56080.067*
H10B0.49790.06810.46880.067*
C110.5804 (3)0.0149 (4)0.5482 (3)0.0551 (11)
H11A0.62670.03670.52790.066*
H11B0.58640.02440.60970.066*
C120.5848 (3)0.1414 (4)0.5067 (3)0.0455 (9)
H12A0.58430.13170.44490.055*
H12B0.63690.18280.52270.055*
C130.5111 (2)0.2206 (3)0.5341 (2)0.0361 (8)
H13A0.51400.23530.59530.043*
H13B0.51360.30150.50540.043*
C140.34848 (19)0.0091 (3)0.2919 (2)0.0239 (6)
C150.4234 (2)0.0517 (3)0.3024 (2)0.0346 (8)
H150.42410.13550.31960.042*
C160.4974 (2)0.0098 (3)0.2877 (2)0.0351 (8)
H160.54860.03190.29420.042*
C170.4956 (2)0.1325 (3)0.2636 (2)0.0327 (8)
H170.54590.17500.25320.039*
C180.4208 (2)0.1936 (3)0.2545 (2)0.0296 (7)
H180.42060.27820.23920.035*
C190.34610 (19)0.1327 (3)0.26748 (18)0.0227 (6)
C200.26705 (18)0.1994 (3)0.24848 (18)0.0221 (6)
C210.1806 (2)0.3805 (3)0.2773 (2)0.0264 (7)
H210.17130.39360.21590.032*
C220.1946 (2)0.5054 (3)0.3188 (2)0.0324 (7)
H22A0.21000.49290.37830.039*
H22B0.24100.54790.29050.039*
C230.1177 (2)0.5864 (3)0.3142 (2)0.0354 (8)
H23A0.12750.66350.34600.042*
H23B0.10690.60880.25500.042*
C240.0428 (2)0.5213 (4)0.3498 (3)0.0426 (9)
H24A0.00660.57400.34260.051*
H24B0.05090.50700.41060.051*
C250.0290 (2)0.3983 (4)0.3057 (3)0.0459 (10)
H25A0.01920.35590.33090.055*
H25B0.01700.41280.24560.055*
C260.1052 (2)0.3169 (3)0.3139 (3)0.0346 (7)
H26A0.11510.29820.37390.042*
H26B0.09560.23810.28410.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0271 (4)0.0283 (3)0.0292 (4)0.0026 (3)0.0003 (3)0.0022 (3)
S20.0288 (4)0.0271 (4)0.0372 (4)0.0029 (4)0.0010 (4)0.0083 (4)
O10.0255 (12)0.0457 (14)0.0359 (13)0.0016 (10)0.0031 (10)0.0036 (11)
O20.0453 (15)0.0363 (14)0.0504 (16)0.0056 (12)0.0067 (13)0.0126 (12)
O30.0335 (12)0.0273 (11)0.0253 (12)0.0013 (9)0.0015 (9)0.0036 (9)
O40.0457 (16)0.0363 (14)0.0660 (19)0.0054 (12)0.0088 (14)0.0238 (13)
O50.0355 (13)0.0477 (15)0.0351 (14)0.0036 (12)0.0101 (11)0.0036 (11)
O60.0307 (12)0.0239 (11)0.0282 (12)0.0004 (9)0.0059 (9)0.0009 (9)
N10.0382 (17)0.0278 (15)0.0330 (16)0.0030 (13)0.0030 (13)0.0038 (12)
N20.0365 (16)0.0249 (13)0.0270 (15)0.0062 (12)0.0058 (12)0.0034 (11)
N30.0340 (17)0.0258 (15)0.0467 (19)0.0033 (13)0.0067 (14)0.0005 (13)
N40.0262 (13)0.0235 (13)0.0283 (14)0.0039 (11)0.0071 (11)0.0022 (10)
C10.0236 (13)0.0287 (14)0.0247 (14)0.0002 (12)0.0000 (13)0.0030 (15)
C20.0307 (17)0.0348 (18)0.040 (2)0.0048 (15)0.0029 (15)0.0011 (15)
C30.0252 (17)0.052 (2)0.045 (2)0.0103 (16)0.0064 (15)0.0092 (17)
C40.0281 (17)0.045 (2)0.045 (2)0.0094 (15)0.0008 (16)0.0169 (18)
C50.0335 (18)0.0302 (16)0.038 (2)0.0062 (14)0.0009 (14)0.0058 (14)
C60.0265 (15)0.0297 (15)0.0244 (16)0.0004 (13)0.0024 (12)0.0059 (12)
C70.0296 (17)0.0225 (15)0.0265 (16)0.0018 (13)0.0023 (13)0.0020 (12)
C80.0380 (19)0.0266 (16)0.0240 (16)0.0057 (14)0.0051 (13)0.0027 (13)
C90.051 (2)0.0281 (17)0.046 (2)0.0075 (15)0.0052 (19)0.0097 (17)
C100.075 (3)0.035 (2)0.057 (3)0.024 (2)0.013 (2)0.0082 (19)
C110.054 (3)0.060 (3)0.051 (3)0.033 (2)0.009 (2)0.007 (2)
C120.039 (2)0.049 (2)0.048 (2)0.0136 (18)0.0046 (18)0.0036 (19)
C130.0355 (19)0.0340 (18)0.0390 (19)0.0084 (15)0.0028 (15)0.0044 (15)
C140.0219 (14)0.0214 (14)0.0285 (16)0.0033 (12)0.0027 (12)0.0006 (11)
C150.0361 (19)0.0261 (16)0.042 (2)0.0023 (14)0.0063 (15)0.0001 (14)
C160.0244 (15)0.0324 (17)0.049 (2)0.0046 (13)0.0031 (15)0.0066 (16)
C170.0232 (16)0.0336 (17)0.041 (2)0.0069 (14)0.0008 (14)0.0046 (15)
C180.0326 (17)0.0268 (16)0.0293 (17)0.0031 (14)0.0014 (14)0.0017 (13)
C190.0263 (15)0.0217 (14)0.0201 (14)0.0024 (12)0.0011 (12)0.0033 (11)
C200.0233 (15)0.0210 (14)0.0221 (15)0.0002 (11)0.0021 (12)0.0014 (11)
C210.0276 (16)0.0235 (15)0.0282 (16)0.0030 (12)0.0007 (13)0.0014 (13)
C220.0349 (17)0.0251 (16)0.0372 (18)0.0009 (13)0.0013 (15)0.0000 (15)
C230.049 (2)0.0245 (16)0.0329 (18)0.0110 (15)0.0021 (17)0.0016 (15)
C240.045 (2)0.039 (2)0.043 (2)0.0157 (17)0.0108 (17)0.0005 (17)
C250.0315 (19)0.044 (2)0.062 (3)0.0031 (16)0.0074 (18)0.0036 (19)
C260.0362 (19)0.0271 (16)0.0406 (19)0.0022 (14)0.0025 (16)0.0006 (15)
Geometric parameters (Å, º) top
S1—O11.425 (2)C10—H10A0.9900
S1—O21.434 (3)C10—H10B0.9900
S1—N11.610 (3)C11—C121.525 (6)
S1—C11.777 (3)C11—H11A0.9900
S2—O51.428 (3)C11—H11B0.9900
S2—O41.434 (3)C12—C131.534 (5)
S2—N31.604 (3)C12—H12A0.9900
S2—C141.777 (3)C12—H12B0.9900
O3—C71.252 (4)C13—H13A0.9900
O6—C201.242 (4)C13—H13B0.9900
N1—H11N0.92 (4)C14—C151.390 (4)
N1—H12N0.86 (4)C14—C191.397 (4)
N2—C71.320 (4)C15—C161.390 (5)
N2—C81.467 (4)C15—H150.9500
N2—H2N0.91 (4)C16—C171.385 (5)
N3—H31N0.85 (4)C16—H160.9500
N3—H32N0.88 (4)C17—C181.387 (5)
N4—C201.325 (4)C17—H170.9500
N4—C211.470 (4)C18—C191.393 (4)
N4—H4N0.85 (4)C18—H180.9500
C1—C21.390 (4)C19—C201.501 (4)
C1—C61.405 (4)C21—C261.518 (5)
C2—C31.382 (5)C21—C221.525 (4)
C2—H20.9500C21—H211.0000
C3—C41.371 (6)C22—C231.525 (4)
C3—H30.9500C22—H22A0.9900
C4—C51.381 (5)C22—H22B0.9900
C4—H40.9500C23—C241.513 (5)
C5—C61.393 (4)C23—H23A0.9900
C5—H50.9500C23—H23B0.9900
C6—C71.500 (4)C24—C251.524 (5)
C8—C131.510 (5)C24—H24A0.9900
C8—C91.524 (4)C24—H24B0.9900
C8—H81.0000C25—C261.521 (5)
C9—C101.531 (5)C25—H25A0.9900
C9—H9A0.9900C25—H25B0.9900
C9—H9B0.9900C26—H26A0.9900
C10—C111.498 (7)C26—H26B0.9900
O1—S1—O2120.00 (16)C11—C12—C13110.1 (3)
O1—S1—N1107.43 (16)C11—C12—H12A109.6
O2—S1—N1106.70 (17)C13—C12—H12A109.6
O1—S1—C1106.58 (14)C11—C12—H12B109.6
O2—S1—C1107.23 (15)C13—C12—H12B109.6
N1—S1—C1108.50 (16)H12A—C12—H12B108.1
O5—S2—O4119.74 (18)C8—C13—C12110.9 (3)
O5—S2—N3107.38 (17)C8—C13—H13A109.5
O4—S2—N3106.62 (17)C12—C13—H13A109.5
O5—S2—C14105.93 (15)C8—C13—H13B109.5
O4—S2—C14107.90 (16)C12—C13—H13B109.5
N3—S2—C14108.96 (17)H13A—C13—H13B108.0
S1—N1—H11N114 (2)C15—C14—C19120.8 (3)
S1—N1—H12N112 (3)C15—C14—S2118.6 (3)
H11N—N1—H12N113 (4)C19—C14—S2120.5 (2)
C7—N2—C8123.6 (3)C16—C15—C14120.3 (3)
C7—N2—H2N117 (2)C16—C15—H15119.9
C8—N2—H2N119 (2)C14—C15—H15119.9
S2—N3—H31N112 (3)C17—C16—C15119.3 (3)
S2—N3—H32N114 (3)C17—C16—H16120.4
H31N—N3—H32N114 (4)C15—C16—H16120.4
C20—N4—C21122.8 (3)C16—C17—C18120.4 (3)
C20—N4—H4N118 (2)C16—C17—H17119.8
C21—N4—H4N119 (2)C18—C17—H17119.8
C2—C1—C6120.5 (3)C17—C18—C19121.0 (3)
C2—C1—S1118.5 (2)C17—C18—H18119.5
C6—C1—S1120.9 (2)C19—C18—H18119.5
C3—C2—C1120.2 (3)C18—C19—C14118.2 (3)
C3—C2—H2119.9C18—C19—C20118.8 (3)
C1—C2—H2119.9C14—C19—C20122.8 (3)
C4—C3—C2119.9 (3)O6—C20—N4123.8 (3)
C4—C3—H3120.1O6—C20—C19119.9 (3)
C2—C3—H3120.1N4—C20—C19116.3 (3)
C3—C4—C5120.3 (3)N4—C21—C26111.3 (3)
C3—C4—H4119.9N4—C21—C22108.6 (3)
C5—C4—H4119.9C26—C21—C22110.9 (3)
C4—C5—C6121.5 (3)N4—C21—H21108.6
C4—C5—H5119.3C26—C21—H21108.6
C6—C5—H5119.3C22—C21—H21108.6
C5—C6—C1117.6 (3)C23—C22—C21111.7 (3)
C5—C6—C7118.6 (3)C23—C22—H22A109.3
C1—C6—C7123.6 (3)C21—C22—H22A109.3
O3—C7—N2124.1 (3)C23—C22—H22B109.3
O3—C7—C6120.5 (3)C21—C22—H22B109.3
N2—C7—C6115.3 (3)H22A—C22—H22B107.9
N2—C8—C13111.3 (3)C24—C23—C22111.5 (3)
N2—C8—C9108.7 (3)C24—C23—H23A109.3
C13—C8—C9111.3 (3)C22—C23—H23A109.3
N2—C8—H8108.5C24—C23—H23B109.3
C13—C8—H8108.5C22—C23—H23B109.3
C9—C8—H8108.5H23A—C23—H23B108.0
C8—C9—C10111.3 (3)C23—C24—C25110.7 (3)
C8—C9—H9A109.4C23—C24—H24A109.5
C10—C9—H9A109.4C25—C24—H24A109.5
C8—C9—H9B109.4C23—C24—H24B109.5
C10—C9—H9B109.4C25—C24—H24B109.5
H9A—C9—H9B108.0H24A—C24—H24B108.1
C11—C10—C9112.3 (3)C26—C25—C24110.5 (3)
C11—C10—H10A109.1C26—C25—H25A109.6
C9—C10—H10A109.1C24—C25—H25A109.6
C11—C10—H10B109.1C26—C25—H25B109.6
C9—C10—H10B109.1C24—C25—H25B109.6
H10A—C10—H10B107.9H25A—C25—H25B108.1
C10—C11—C12111.5 (3)C21—C26—C25110.8 (3)
C10—C11—H11A109.3C21—C26—H26A109.5
C12—C11—H11A109.3C25—C26—H26A109.5
C10—C11—H11B109.3C21—C26—H26B109.5
C12—C11—H11B109.3C25—C26—H26B109.5
H11A—C11—H11B108.0H26A—C26—H26B108.1
O1—S1—C1—C2134.7 (3)O5—S2—C14—C15133.5 (3)
O2—S1—C1—C25.0 (3)O4—S2—C14—C154.1 (3)
N1—S1—C1—C2109.9 (3)N3—S2—C14—C15111.3 (3)
O1—S1—C1—C643.4 (3)O5—S2—C14—C1942.3 (3)
O2—S1—C1—C6173.1 (3)O4—S2—C14—C19171.7 (3)
N1—S1—C1—C672.0 (3)N3—S2—C14—C1972.9 (3)
C6—C1—C2—C32.5 (6)C19—C14—C15—C160.7 (5)
S1—C1—C2—C3179.4 (3)S2—C14—C15—C16176.5 (3)
C1—C2—C3—C41.5 (6)C14—C15—C16—C170.8 (5)
C2—C3—C4—C50.6 (6)C15—C16—C17—C180.3 (5)
C3—C4—C5—C61.7 (6)C16—C17—C18—C191.4 (5)
C4—C5—C6—C10.7 (5)C17—C18—C19—C141.5 (5)
C4—C5—C6—C7174.5 (3)C17—C18—C19—C20173.9 (3)
C2—C1—C6—C51.4 (5)C15—C14—C19—C180.5 (4)
S1—C1—C6—C5179.4 (2)S2—C14—C19—C18175.3 (2)
C2—C1—C6—C7176.4 (3)C15—C14—C19—C20174.8 (3)
S1—C1—C6—C75.6 (5)S2—C14—C19—C209.5 (4)
C8—N2—C7—O30.7 (5)C21—N4—C20—O63.6 (5)
C8—N2—C7—C6177.3 (3)C21—N4—C20—C19179.2 (3)
C5—C6—C7—O3114.7 (3)C18—C19—C20—O6120.3 (3)
C1—C6—C7—O360.2 (4)C14—C19—C20—O655.0 (4)
C5—C6—C7—N262.1 (4)C18—C19—C20—N457.0 (4)
C1—C6—C7—N2123.0 (3)C14—C19—C20—N4127.7 (3)
C7—N2—C8—C1378.8 (4)C20—N4—C21—C2668.3 (4)
C7—N2—C8—C9158.2 (3)C20—N4—C21—C22169.3 (3)
N2—C8—C9—C10177.0 (3)N4—C21—C22—C23176.7 (3)
C13—C8—C9—C1054.0 (4)C26—C21—C22—C2354.1 (4)
C8—C9—C10—C1153.1 (5)C21—C22—C23—C2454.0 (4)
C9—C10—C11—C1254.6 (5)C22—C23—C24—C2555.5 (4)
C10—C11—C12—C1356.3 (5)C23—C24—C25—C2657.6 (4)
N2—C8—C13—C12178.2 (3)N4—C21—C26—C25177.4 (3)
C9—C8—C13—C1256.7 (4)C22—C21—C26—C2556.3 (4)
C11—C12—C13—C857.4 (4)C24—C25—C26—C2158.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O4i0.92 (4)2.05 (4)2.935 (4)161 (4)
N2—H2N···O6ii0.91 (4)1.96 (4)2.874 (4)175 (4)
N3—H32N···O2iii0.88 (4)2.23 (4)2.943 (4)138 (4)
C3—H3···O1iv0.952.543.254 (4)132
N1—H12N···O30.86 (4)2.18 (4)2.938 (4)146 (4)
N3—H31N···O60.85 (4)2.09 (4)2.831 (4)145 (4)
N4—H4N···O30.85 (4)2.11 (4)2.952 (4)171 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y1, z1/2; (iv) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H18N2O3S
Mr282.35
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)16.1869 (5), 10.8467 (3), 15.9353 (4)
V3)2797.83 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.14 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.954, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
5929, 5929, 5451
Rint0.034
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.110, 1.14
No. of reflections5929
No. of parameters362
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.28
Absolute structureFlack (1983)
Absolute structure parameter0.52 (8)

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O4i0.92 (4)2.05 (4)2.935 (4)161 (4)
N2—H2N···O6ii0.91 (4)1.96 (4)2.874 (4)175 (4)
N3—H32N···O2iii0.88 (4)2.23 (4)2.943 (4)138 (4)
C3—H3···O1iv0.952.543.254 (4)132.2
N1—H12N···O30.86 (4)2.18 (4)2.938 (4)146 (4)
N3—H31N···O60.85 (4)2.09 (4)2.831 (4)145 (4)
N4—H4N···O30.85 (4)2.11 (4)2.952 (4)171 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y1, z1/2; (iv) x1/2, y+1, z.
 

Acknowledgements

WAS is grateful to the University of Sargodha, Sargodha, Pakistan, for providing research facilities.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEatedal, H., Aal, A., El-Sabbagh, O. I., Youssif, S. & El-Nabtity, S. M. (2002). Monatsh. Chem. 133, 255–266.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetrov, V., Girichev, G. V., Oberhammer, H., Giricheva, N. I. & Ivanov, S. J. (2006). Org. Chem. 71, 2952–2956.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o367–o371.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds