metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­diformatonickel(II)]-μ-1,4-bis­­(1H-benzimidazol-1-yl)benzene] dihydrate]

aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: lihuiwff@163.com

(Received 13 January 2012; accepted 23 January 2012; online 31 January 2012)

In the title one-dimensional coordination polymer, {[Ni(CHO2)2(C20H14N4)(H2O)2]·2H2O}n, the NiII atom lies on a crystallographic inversion centre. It is coordinated by two formate O atoms, two water O atoms and two N atoms from two 1,4-bis­(1H-benzimidazol-1-yl)benzene (bzb) ligands, resulting in a distorted trans-NiN2O4 octa­hedral coordination geometry. The bzb mol­ecule acts as a bridging ligand to connect the metal atoms into a chain propagating in [1[\overline{1}][\overline{1}]]. The dihedral angle between the benzimidazole ring and the central benzene ring in the ligand is 38.16 (9)°. In the crystal, O—H⋯O hydrogen bonds crosslink the chains into (010) sheets.

Related literature

For background to coordination polymers containing imidazole-derived ligands, see: Li et al. (2009[Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904-3909.], 2011[Li, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984-1989.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(CHO2)2(C20H14N4)(H2O)2]·2H2O

  • Mr = 531.16

  • Triclinic, [P \overline 1]

  • a = 7.4431 (15) Å

  • b = 9.0895 (18) Å

  • c = 9.3863 (19) Å

  • α = 78.46 (3)°

  • β = 77.79 (3)°

  • γ = 67.86 (3)°

  • V = 569.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.797, Tmax = 0.834

  • 5022 measured reflections

  • 2000 independent reflections

  • 1874 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.061

  • S = 1.09

  • 2000 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0695 (14)
Ni1—N1 2.0908 (16)
Ni1—O1W 2.1036 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2i 0.85 1.85 2.694 (2) 169
O1W—H1B⋯O2Wii 0.85 1.92 2.762 (2) 169
O2W—H2A⋯O2iii 0.85 1.91 2.760 (2) 173
O2W—H2B⋯O1iv 0.85 2.16 2.846 (2) 137
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) -x+2, -y+1, -z+1; (iv) x, y, z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole has been extensively used in crystal engineering, and a large number of imidazole-containing flexible ligands have been extensively studied. However, to our knowledge, the research on imidazole ligands bearing rigid spacers is still less developed (Li et al., 2009; Li et al., 2011). For the title compound, the geometry of the NiII ion is bound by two benzimidazole rings of individual L ligands, two water molecules and two formate ions forming a slightly distorted octahedral coordination environment(Fig. 1). Notably, as shown in Fig. 2, the six-coordinate NiII center is bridged by the ligand L to form an infinite one-dimensional architecture.

Related literature top

For background to coordination polymers containing imidazole-derived ligands, see: Li et al. (2009, 2011).

Experimental top

A mixture of CH3OH and H2O (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of Ni(HCO2)2 in H2O (6 ml). Then a solution of 1,4-di(1H-benzimidazol-1-yl)benzene (L, 0.06 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, green block single crystals appeared at the boundary. Yield: ~20% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[[diaquadiformatonickel(II)]-µ-1,4- bis(1H-benzimidazol-1-yl)benzene] dihydrate] top
Crystal data top
[Ni(CHO2)2(C20H14N4)(H2O)2]·2H2OZ = 1
Mr = 531.16F(000) = 276
Triclinic, P1Dx = 1.548 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4431 (15) ÅCell parameters from 6111 reflections
b = 9.0895 (18) Åθ = 6.2–55.0°
c = 9.3863 (19) ŵ = 0.91 mm1
α = 78.46 (3)°T = 293 K
β = 77.79 (3)°Block, green
γ = 67.86 (3)°0.25 × 0.22 × 0.20 mm
V = 569.8 (2) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2000 independent reflections
Radiation source: fine-focus sealed tube1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1010
Tmin = 0.797, Tmax = 0.834l = 1111
5022 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.3422P]
where P = (Fo2 + 2Fc2)/3
2000 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Ni(CHO2)2(C20H14N4)(H2O)2]·2H2Oγ = 67.86 (3)°
Mr = 531.16V = 569.8 (2) Å3
Triclinic, P1Z = 1
a = 7.4431 (15) ÅMo Kα radiation
b = 9.0895 (18) ŵ = 0.91 mm1
c = 9.3863 (19) ÅT = 293 K
α = 78.46 (3)°0.25 × 0.22 × 0.20 mm
β = 77.79 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2000 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1874 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.834Rint = 0.021
5022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2000 reflectionsΔρmin = 0.19 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.00000.01789 (11)
N10.8599 (2)0.05059 (18)0.21160 (16)0.0233 (4)
N20.7076 (2)0.21017 (19)0.38522 (17)0.0251 (4)
O11.11753 (19)0.17566 (16)0.00983 (15)0.0272 (3)
O21.3775 (2)0.24681 (19)0.03883 (19)0.0439 (4)
O2W0.8143 (3)0.4708 (2)0.9185 (2)0.0580 (5)
O1W0.76721 (19)0.18582 (16)0.09086 (15)0.0265 (3)
C10.7822 (3)0.1980 (2)0.2416 (2)0.0265 (4)
H10.77850.28640.17090.032*
C20.7415 (3)0.0544 (2)0.4562 (2)0.0243 (4)
C30.6960 (3)0.0069 (3)0.6010 (2)0.0349 (5)
H30.63190.05980.67330.042*
C40.7496 (4)0.1702 (3)0.6330 (2)0.0410 (6)
H40.72350.21560.72940.049*
C50.8426 (3)0.2698 (3)0.5238 (3)0.0390 (5)
H50.87620.38000.54930.047*
C60.8858 (3)0.2091 (2)0.3798 (2)0.0301 (5)
H60.94650.27620.30760.036*
C70.8359 (3)0.0440 (2)0.3458 (2)0.0223 (4)
C80.6026 (3)0.3572 (2)0.4442 (2)0.0242 (4)
C90.6216 (3)0.3723 (2)0.5828 (2)0.0280 (5)
H90.70310.28640.63860.034*
C100.5193 (3)0.5154 (2)0.6388 (2)0.0292 (5)
H100.53210.52620.73220.035*
C111.2948 (3)0.1551 (2)0.0493 (2)0.0280 (5)
H111.37230.06220.09050.034*
H1A0.64790.19210.07090.042*
H1B0.76580.27990.09050.042*
H2A0.76440.55820.95590.042*
H2B0.92930.42120.94050.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01748 (19)0.01802 (19)0.01746 (19)0.00478 (14)0.00105 (13)0.00749 (13)
N10.0272 (9)0.0210 (9)0.0184 (8)0.0052 (7)0.0011 (7)0.0064 (7)
N20.0323 (9)0.0199 (8)0.0185 (8)0.0045 (7)0.0018 (7)0.0073 (6)
O10.0218 (7)0.0261 (8)0.0348 (8)0.0090 (6)0.0019 (6)0.0117 (6)
O20.0276 (8)0.0366 (9)0.0723 (12)0.0153 (7)0.0012 (8)0.0161 (8)
O2W0.0580 (12)0.0302 (9)0.0900 (15)0.0068 (8)0.0309 (10)0.0132 (9)
O1W0.0220 (7)0.0249 (7)0.0311 (8)0.0061 (6)0.0041 (6)0.0041 (6)
C10.0348 (11)0.0218 (10)0.0185 (10)0.0068 (9)0.0017 (8)0.0052 (8)
C20.0247 (10)0.0217 (10)0.0230 (10)0.0043 (8)0.0000 (8)0.0067 (8)
C30.0440 (13)0.0329 (12)0.0215 (11)0.0100 (10)0.0042 (9)0.0063 (9)
C40.0539 (15)0.0345 (13)0.0257 (12)0.0133 (11)0.0021 (10)0.0031 (9)
C50.0459 (14)0.0235 (11)0.0397 (13)0.0089 (10)0.0003 (10)0.0002 (9)
C60.0308 (11)0.0234 (11)0.0311 (12)0.0045 (9)0.0016 (9)0.0091 (9)
C70.0209 (10)0.0218 (10)0.0221 (10)0.0044 (8)0.0010 (8)0.0068 (8)
C80.0267 (10)0.0217 (10)0.0207 (10)0.0047 (8)0.0021 (8)0.0087 (8)
C90.0321 (11)0.0234 (10)0.0238 (11)0.0020 (9)0.0065 (8)0.0059 (8)
C100.0378 (12)0.0290 (11)0.0186 (10)0.0061 (9)0.0038 (8)0.0097 (8)
C110.0241 (11)0.0248 (11)0.0333 (12)0.0057 (9)0.0026 (9)0.0075 (9)
Geometric parameters (Å, º) top
Ni1—O1i2.0695 (14)C2—C31.385 (3)
Ni1—O12.0695 (14)C2—C71.399 (3)
Ni1—N1i2.0908 (16)C3—C41.371 (3)
Ni1—N12.0908 (16)C3—H30.9300
Ni1—O1W2.1036 (16)C4—C51.395 (3)
Ni1—O1Wi2.1036 (16)C4—H40.9300
N1—C11.307 (2)C5—C61.373 (3)
N1—C71.395 (2)C5—H50.9300
N2—C11.354 (2)C6—C71.389 (3)
N2—C21.391 (2)C6—H60.9300
N2—C81.424 (2)C8—C91.377 (3)
O1—C111.245 (2)C8—C10ii1.385 (3)
O2—C111.236 (2)C9—C101.380 (3)
O2W—H2A0.8522C9—H90.9300
O2W—H2B0.8516C10—C8ii1.385 (3)
O1W—H1A0.8504C10—H100.9300
O1W—H1B0.8516C11—H110.9300
C1—H10.9300
O1i—Ni1—O1180.00 (5)C3—C2—C7122.24 (18)
O1i—Ni1—N1i87.66 (6)N2—C2—C7105.25 (16)
O1—Ni1—N1i92.34 (6)C4—C3—C2116.98 (19)
O1i—Ni1—N192.34 (6)C4—C3—H3121.5
O1—Ni1—N187.66 (6)C2—C3—H3121.5
N1i—Ni1—N1180.00 (10)C3—C4—C5121.4 (2)
O1i—Ni1—O1W94.56 (6)C3—C4—H4119.3
O1—Ni1—O1W85.44 (6)C5—C4—H4119.3
N1i—Ni1—O1W89.72 (6)C6—C5—C4121.7 (2)
N1—Ni1—O1W90.28 (6)C6—C5—H5119.2
O1i—Ni1—O1Wi85.44 (6)C4—C5—H5119.2
O1—Ni1—O1Wi94.56 (6)C5—C6—C7117.75 (19)
N1i—Ni1—O1Wi90.28 (6)C5—C6—H6121.1
N1—Ni1—O1Wi89.72 (6)C7—C6—H6121.1
O1W—Ni1—O1Wi180.00 (11)C6—C7—N1130.60 (17)
C1—N1—C7105.03 (15)C6—C7—C2119.93 (18)
C1—N1—Ni1120.95 (13)N1—C7—C2109.45 (16)
C7—N1—Ni1133.87 (12)C9—C8—C10ii120.26 (18)
C1—N2—C2106.47 (16)C9—C8—N2120.29 (18)
C1—N2—C8124.79 (17)C10ii—C8—N2119.45 (17)
C2—N2—C8128.57 (16)C8—C9—C10119.76 (19)
C11—O1—Ni1123.29 (13)C8—C9—H9120.1
H2A—O2W—H2B109.0C10—C9—H9120.1
Ni1—O1W—H1A124.7C9—C10—C8ii119.98 (18)
Ni1—O1W—H1B114.7C9—C10—H10120.0
H1A—O1W—H1B105.8C8ii—C10—H10120.0
N1—C1—N2113.79 (18)O2—C11—O1126.04 (19)
N1—C1—H1123.1O2—C11—H11117.0
N2—C1—H1123.1O1—C11—H11117.0
C3—C2—N2132.49 (18)
O1i—Ni1—N1—C1139.94 (16)N2—C2—C3—C4178.9 (2)
O1—Ni1—N1—C140.06 (16)C7—C2—C3—C40.7 (3)
N1i—Ni1—N1—C1152 (100)C2—C3—C4—C51.2 (4)
O1W—Ni1—N1—C145.36 (16)C3—C4—C5—C60.4 (4)
O1Wi—Ni1—N1—C1134.64 (16)C4—C5—C6—C70.8 (3)
O1i—Ni1—N1—C745.25 (18)C5—C6—C7—N1179.6 (2)
O1—Ni1—N1—C7134.75 (18)C5—C6—C7—C21.2 (3)
N1i—Ni1—N1—C723 (100)C1—N1—C7—C6178.2 (2)
O1W—Ni1—N1—C7139.83 (18)Ni1—N1—C7—C66.4 (3)
O1Wi—Ni1—N1—C740.17 (18)C1—N1—C7—C20.3 (2)
O1i—Ni1—O1—C1190 (100)Ni1—N1—C7—C2175.08 (14)
N1i—Ni1—O1—C1148.98 (16)C3—C2—C7—C60.5 (3)
N1—Ni1—O1—C11131.02 (16)N2—C2—C7—C6178.12 (18)
O1W—Ni1—O1—C11138.51 (16)C3—C2—C7—N1179.16 (19)
O1Wi—Ni1—O1—C1141.49 (16)N2—C2—C7—N10.6 (2)
C7—N1—C1—N20.1 (2)C1—N2—C8—C9145.1 (2)
Ni1—N1—C1—N2176.23 (13)C2—N2—C8—C940.3 (3)
C2—N2—C1—N10.5 (2)C1—N2—C8—C10ii35.2 (3)
C8—N2—C1—N1175.17 (18)C2—N2—C8—C10ii139.5 (2)
C1—N2—C2—C3179.0 (2)C10ii—C8—C9—C100.3 (3)
C8—N2—C2—C33.6 (4)N2—C8—C9—C10179.95 (18)
C1—N2—C2—C70.6 (2)C8—C9—C10—C8ii0.3 (3)
C8—N2—C2—C7174.80 (18)Ni1—O1—C11—O2169.69 (16)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2iii0.851.852.694 (2)169
O1W—H1B···O2Wiv0.851.922.762 (2)169
O2W—H2A···O2v0.851.912.760 (2)173
O2W—H2B···O1vi0.852.162.846 (2)137
Symmetry codes: (iii) x1, y, z; (iv) x, y, z1; (v) x+2, y+1, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(CHO2)2(C20H14N4)(H2O)2]·2H2O
Mr531.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4431 (15), 9.0895 (18), 9.3863 (19)
α, β, γ (°)78.46 (3), 77.79 (3), 67.86 (3)
V3)569.8 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.797, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
5022, 2000, 1874
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.09
No. of reflections2000
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O12.0695 (14)Ni1—O1W2.1036 (16)
Ni1—N12.0908 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.851.852.694 (2)169
O1W—H1B···O2Wii0.851.922.762 (2)169
O2W—H2A···O2iii0.851.912.760 (2)173
O2W—H2B···O1iv0.852.162.846 (2)137
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x+2, y+1, z+1; (iv) x, y, z+1.
 

Acknowledgements

The authors thank the Young Scientist Fund of the NSFC of China (grant No. 51101138) and the College Research Program of Yuncheng University (grant No. 2008114) for funding.

References

First citationLi, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984–1989.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds