organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o485-o486

3-Acetyl-1-(3-methyl­phen­yl)-5-phenyl-1H-pyrazole-4-carbo­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 January 2012; accepted 15 January 2012; online 21 January 2012)

In the title compound, C19H15N3O, the central pyrazole ring makes dihedral angles of 35.52 (12) and 62.21 (11)° with the attached phenyl and methyl-substituted phenyl rings, respectively. The corresponding angle between the phenyl and methyl-substituted phenyl rings is 62.90 (11)°. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the a-axis direction.

Related literature

For details and applications of pyrazole compounds, see: Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Kracmer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]); De Geest et al. (2007[De Geest, D. J., Noble, A., Moubaraki, B., Murray, K. S., Larsen, D. S. & Brooker, S. (2007). Dalton Trans. pp. 467-475.]); Roy et al. (2008[Roy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., El Fallah, M. S., Tercero, J. & Kar, S. K. (2008). Polyhedron, 27, 105-112.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Chia, T. S., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011a). Acta Cryst. E67, o2822-o2823.],b[Fun, H.-K., Asik, S. I. J., Razak, I. A., Shetty, S. & Kalluraya, B. (2011b). Acta Cryst. E67, o928.],c[Fun, H.-K., Hemamalini, M., Malladi, S., Poojari, P. & Isloor, A. M. (2011c). Acta Cryst. E67, o1745-o1746.]). For further synthetic details, see: Nassar et al. (2011[Nassar, E., Abdel-Aziz, H. A., Ibrahim, H. S. & Mansour, A. M. (2011). Sci. Pharm. 79, 507-524.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3O

  • Mr = 301.34

  • Monoclinic, P 21 /c

  • a = 11.8544 (8) Å

  • b = 7.6731 (6) Å

  • c = 17.4048 (15) Å

  • β = 96.202 (6)°

  • V = 1573.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 296 K

  • 0.55 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.717, Tmax = 0.902

  • 8352 measured reflections

  • 2776 independent reflections

  • 1804 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.227

  • S = 1.05

  • 2776 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.56 3.444 (3) 160
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole-based ligands have attracted considerable attention due to their bridging nature and possibility for easy functionalization with various additional donor groups (Kovbasyuk et al., 2004; Sachse et al., 2008). In particular, azomethine-functionalized pyrazoles have been used extensively as ligands in the field of coordination chemistry and catalysis (De Geest et al., 2007; Roy et al., 2008). The crystal structures of 4-(1,3-Diphenyl-4,5-dihydro-1H-pyrazol-5-yl)-1,3-diphenyl- 1H-pyrazole, 3-Methyl-5-oxo-4-(2-phenylhydrazinylidene)-4,5- dihydro-1H-pyrazole-1-carbothioamide and (2E)-3-(1,3- Diphenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one (Fun et al., 2011a,b,c) have been reported from our laboratory. In continuation of our studies of pyrazole compounds, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound is shown in Fig. 1. The central pyrazole (N1,N2/C9–C11) ring makes dihedral angles of 35.52 (12) and 62.21 (11)° with the attached phenyl (C12–C17) and methyl substituted pheny (C1–C6) rings. The corresponding angle between the phenyl (C12–C17) and methyl substituted (C1–C6) phenyl rings is 62.90 (11)°.

In the crystal structure (Fig. 2), molecules are connected by weak intermolecular C—H···O (Table 1) hydrogen bonds, forming supramolecular chains propagating along the a-axis direction.

Related literature top

For details and applications of pyrazole compounds, see: Kovbasyuk et al. (2004); Sachse et al. (2008); De Geest et al. (2007); Roy et al. (2008). For related structures, see: Fun et al. (2011a,b,c). For further synthetic details, see: Nassar et al. (2011).

Experimental top

The title compound was prepared according to the reported method (Nassar et al., 2011). Colourless blocks were obtained by slowly evaporating from ethanol at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of title compound (I).
3-Acetyl-1-(3-methylphenyl)-5-phenyl-1H-pyrazole-4-carbonitrile top
Crystal data top
C19H15N3OF(000) = 632
Mr = 301.34Dx = 1.272 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1651 reflections
a = 11.8544 (8) Åθ = 6.3–66.5°
b = 7.6731 (6) ŵ = 0.65 mm1
c = 17.4048 (15) ÅT = 296 K
β = 96.202 (6)°Block, colourless
V = 1573.9 (2) Å30.55 × 0.21 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2776 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ and ω scansθmax = 67.4°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1114
Tmin = 0.717, Tmax = 0.902k = 98
8352 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.227 w = 1/[σ2(Fo2) + (0.1264P)2 + 0.0573P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2776 reflectionsΔρmax = 0.27 e Å3
209 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (13)
Crystal data top
C19H15N3OV = 1573.9 (2) Å3
Mr = 301.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.8544 (8) ŵ = 0.65 mm1
b = 7.6731 (6) ÅT = 296 K
c = 17.4048 (15) Å0.55 × 0.21 × 0.16 mm
β = 96.202 (6)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2776 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1804 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.902Rint = 0.091
8352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
2776 reflectionsΔρmin = 0.37 e Å3
209 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18649 (19)0.0026 (3)0.85181 (12)0.0503 (7)
H1A0.23310.09550.86880.060*
C20.0758 (2)0.0011 (3)0.86879 (13)0.0550 (7)
C30.0088 (2)0.1432 (3)0.84253 (14)0.0586 (7)
H3A0.06620.14920.85340.070*
C40.0527 (2)0.2746 (3)0.80077 (14)0.0590 (7)
H4A0.00640.36770.78370.071*
C50.1629 (2)0.2711 (3)0.78384 (13)0.0538 (6)
H5A0.19240.36040.75590.065*
C60.22883 (19)0.1295 (3)0.80997 (12)0.0461 (6)
N10.34545 (16)0.1197 (2)0.79402 (11)0.0489 (6)
N20.42757 (17)0.1217 (2)0.85538 (11)0.0523 (6)
C90.5249 (2)0.1171 (3)0.82443 (14)0.0482 (6)
C100.5062 (2)0.1118 (3)0.74350 (13)0.0496 (7)
C110.38934 (19)0.1128 (2)0.72492 (13)0.0458 (6)
C120.32137 (19)0.1023 (3)0.64932 (13)0.0480 (6)
C130.2211 (2)0.0089 (3)0.63772 (13)0.0521 (6)
H13A0.19370.04740.67920.062*
C140.1610 (2)0.0016 (3)0.56516 (14)0.0615 (7)
H14A0.09310.06340.55830.074*
C150.2016 (2)0.0791 (4)0.50341 (16)0.0684 (8)
H15A0.16090.07240.45470.082*
C160.3012 (2)0.1689 (3)0.51313 (15)0.0687 (8)
H16A0.32890.22130.47080.082*
C170.3613 (2)0.1829 (3)0.58552 (13)0.0588 (7)
H17A0.42860.24620.59180.071*
C180.5895 (2)0.1047 (3)0.69062 (17)0.0593 (7)
N40.6559 (2)0.1033 (3)0.64697 (16)0.0835 (8)
C200.6343 (2)0.1168 (3)0.87444 (16)0.0569 (7)
O10.72089 (16)0.0876 (3)0.84499 (12)0.0754 (6)
C230.0279 (3)0.1453 (4)0.91259 (19)0.0857 (10)
H23A0.08610.23030.92630.129*
H23D0.03370.19890.88080.129*
H23B0.00080.10020.95870.129*
C210.6332 (2)0.1535 (4)0.95825 (15)0.0720 (8)
H21A0.70930.14930.98340.108*
H21B0.58770.06770.98060.108*
H21C0.60180.26720.96480.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (16)0.0626 (13)0.0437 (14)0.0026 (10)0.0046 (11)0.0018 (9)
C20.0493 (16)0.0690 (14)0.0472 (13)0.0093 (11)0.0078 (11)0.0001 (10)
C30.0421 (15)0.0816 (16)0.0528 (15)0.0036 (11)0.0086 (12)0.0018 (11)
C40.0484 (16)0.0692 (14)0.0592 (16)0.0083 (12)0.0045 (12)0.0040 (11)
C50.0506 (15)0.0614 (13)0.0499 (14)0.0022 (11)0.0078 (11)0.0052 (10)
C60.0397 (15)0.0631 (12)0.0358 (13)0.0000 (9)0.0048 (10)0.0027 (9)
N10.0401 (12)0.0642 (11)0.0426 (12)0.0001 (8)0.0054 (9)0.0009 (8)
N20.0423 (13)0.0694 (12)0.0443 (12)0.0013 (9)0.0009 (10)0.0006 (8)
C90.0412 (15)0.0551 (12)0.0491 (15)0.0021 (9)0.0083 (11)0.0004 (9)
C100.0449 (15)0.0538 (12)0.0515 (15)0.0006 (9)0.0112 (11)0.0009 (9)
C110.0479 (16)0.0495 (11)0.0413 (14)0.0013 (9)0.0105 (11)0.0015 (8)
C120.0470 (15)0.0528 (12)0.0452 (14)0.0058 (9)0.0100 (11)0.0015 (8)
C130.0524 (15)0.0598 (13)0.0446 (13)0.0006 (11)0.0080 (11)0.0033 (9)
C140.0573 (17)0.0707 (15)0.0553 (15)0.0001 (12)0.0007 (13)0.0077 (12)
C150.074 (2)0.0811 (17)0.0479 (16)0.0099 (14)0.0039 (14)0.0015 (12)
C160.083 (2)0.0761 (16)0.0487 (16)0.0035 (14)0.0133 (14)0.0132 (12)
C170.0654 (17)0.0610 (14)0.0510 (15)0.0043 (11)0.0112 (12)0.0052 (10)
C180.0510 (18)0.0670 (15)0.0610 (18)0.0022 (11)0.0110 (14)0.0011 (11)
N40.0713 (18)0.1056 (18)0.0788 (19)0.0031 (13)0.0314 (15)0.0018 (13)
C200.0425 (16)0.0623 (14)0.0655 (17)0.0066 (11)0.0044 (13)0.0035 (11)
O10.0429 (13)0.0973 (14)0.0857 (15)0.0028 (9)0.0053 (11)0.0070 (10)
C230.077 (2)0.096 (2)0.088 (2)0.0160 (16)0.0272 (18)0.0198 (16)
C210.0598 (17)0.0930 (19)0.0603 (17)0.0084 (14)0.0071 (14)0.0044 (14)
Geometric parameters (Å, º) top
C1—C61.375 (3)C12—C131.384 (3)
C1—C21.376 (3)C12—C171.398 (3)
C1—H1A0.9300C13—C141.384 (3)
C2—C31.396 (3)C13—H13A0.9300
C2—C231.503 (4)C14—C151.372 (4)
C3—C41.377 (3)C14—H14A0.9300
C3—H3A0.9300C15—C161.362 (4)
C4—C51.370 (3)C15—H15A0.9300
C4—H4A0.9300C16—C171.383 (4)
C5—C61.386 (3)C16—H16A0.9300
C5—H5A0.9300C17—H17A0.9300
C6—N11.441 (3)C18—N41.151 (3)
N1—C111.362 (3)C20—O11.217 (3)
N1—N21.365 (3)C20—C211.487 (4)
N2—C91.325 (3)C23—H23A0.9600
C9—C101.403 (3)C23—H23D0.9600
C9—C201.482 (3)C23—H23B0.9600
C10—C111.388 (3)C21—H21A0.9600
C10—C181.422 (4)C21—H21B0.9600
C11—C121.469 (3)C21—H21C0.9600
C6—C1—C2120.6 (2)C17—C12—C11119.2 (2)
C6—C1—H1A119.7C14—C13—C12120.8 (2)
C2—C1—H1A119.7C14—C13—H13A119.6
C1—C2—C3117.9 (2)C12—C13—H13A119.6
C1—C2—C23121.0 (2)C15—C14—C13120.0 (2)
C3—C2—C23121.2 (2)C15—C14—H14A120.0
C4—C3—C2120.7 (2)C13—C14—H14A120.0
C4—C3—H3A119.6C16—C15—C14120.3 (2)
C2—C3—H3A119.6C16—C15—H15A119.9
C5—C4—C3121.5 (2)C14—C15—H15A119.9
C5—C4—H4A119.3C15—C16—C17120.5 (2)
C3—C4—H4A119.3C15—C16—H16A119.8
C4—C5—C6117.5 (2)C17—C16—H16A119.8
C4—C5—H5A121.3C16—C17—C12120.2 (2)
C6—C5—H5A121.3C16—C17—H17A119.9
C1—C6—C5121.8 (2)C12—C17—H17A119.9
C1—C6—N1118.43 (19)N4—C18—C10178.1 (3)
C5—C6—N1119.8 (2)O1—C20—C9118.5 (2)
C11—N1—N2112.52 (19)O1—C20—C21123.0 (2)
C11—N1—C6129.64 (18)C9—C20—C21118.4 (3)
N2—N1—C6117.81 (19)C2—C23—H23A109.5
C9—N2—N1105.08 (19)C2—C23—H23D109.5
N2—C9—C10111.1 (2)H23A—C23—H23D109.5
N2—C9—C20120.4 (2)C2—C23—H23B109.5
C10—C9—C20128.5 (3)H23A—C23—H23B109.5
C11—C10—C9106.2 (2)H23D—C23—H23B109.5
C11—C10—C18126.5 (2)C20—C21—H21A109.5
C9—C10—C18127.3 (2)C20—C21—H21B109.5
N1—C11—C10105.15 (19)H21A—C21—H21B109.5
N1—C11—C12124.6 (2)C20—C21—H21C109.5
C10—C11—C12130.2 (2)H21A—C21—H21C109.5
C13—C12—C17118.2 (2)H21B—C21—H21C109.5
C13—C12—C11122.6 (2)
C6—C1—C2—C30.3 (3)C6—N1—C11—C10177.65 (19)
C6—C1—C2—C23178.3 (2)N2—N1—C11—C12177.50 (17)
C1—C2—C3—C40.2 (3)C6—N1—C11—C124.4 (3)
C23—C2—C3—C4178.4 (3)C9—C10—C11—N10.4 (2)
C2—C3—C4—C50.3 (4)C18—C10—C11—N1179.7 (2)
C3—C4—C5—C60.4 (4)C9—C10—C11—C12177.45 (19)
C2—C1—C6—C50.4 (3)C18—C10—C11—C121.9 (3)
C2—C1—C6—N1179.76 (18)N1—C11—C12—C1336.0 (3)
C4—C5—C6—C10.5 (3)C10—C11—C12—C13141.5 (2)
C4—C5—C6—N1179.78 (19)N1—C11—C12—C17146.9 (2)
C1—C6—N1—C11119.3 (2)C10—C11—C12—C1735.6 (3)
C5—C6—N1—C1161.3 (3)C17—C12—C13—C141.1 (3)
C1—C6—N1—N262.6 (2)C11—C12—C13—C14178.3 (2)
C5—C6—N1—N2116.7 (2)C12—C13—C14—C150.9 (4)
C11—N1—N2—C90.4 (2)C13—C14—C15—C160.3 (4)
C6—N1—N2—C9177.99 (17)C14—C15—C16—C171.3 (4)
N1—N2—C9—C100.1 (2)C15—C16—C17—C121.1 (4)
N1—N2—C9—C20179.71 (19)C13—C12—C17—C160.2 (3)
N2—C9—C10—C110.2 (2)C11—C12—C17—C16177.4 (2)
C20—C9—C10—C11179.4 (2)N2—C9—C20—O1169.6 (2)
N2—C9—C10—C18179.5 (2)C10—C9—C20—O19.9 (3)
C20—C9—C10—C180.0 (4)N2—C9—C20—C2110.8 (3)
N2—N1—C11—C100.5 (2)C10—C9—C20—C21169.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.563.444 (3)160
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H15N3O
Mr301.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.8544 (8), 7.6731 (6), 17.4048 (15)
β (°) 96.202 (6)
V3)1573.9 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.55 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.717, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
8352, 2776, 1804
Rint0.091
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.227, 1.05
No. of reflections2776
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.563.444 (3)160
Symmetry code: (i) x1, y, z.
 

Footnotes

Visiting Professor, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HAA, AMA and HAG thank Universiti Sains Malaysia and King Saud University for supporting this study.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Geest, D. J., Noble, A., Moubaraki, B., Murray, K. S., Larsen, D. S. & Brooker, S. (2007). Dalton Trans. pp. 467–475.  CSD CrossRef Google Scholar
First citationFun, H.-K., Asik, S. I. J., Razak, I. A., Shetty, S. & Kalluraya, B. (2011b). Acta Cryst. E67, o928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011a). Acta Cryst. E67, o2822–o2823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Malladi, S., Poojari, P. & Isloor, A. M. (2011c). Acta Cryst. E67, o1745–o1746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Kracmer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationNassar, E., Abdel-Aziz, H. A., Ibrahim, H. S. & Mansour, A. M. (2011). Sci. Pharm. 79, 507–524.  CrossRef CAS PubMed Google Scholar
First citationRoy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., El Fallah, M. S., Tercero, J. & Kar, S. K. (2008). Polyhedron, 27, 105–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o485-o486
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds