organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o509-o510

1,4-Di-tert-butyl (2R,3R)-2-({(2E)-3-[4-(acet­yl­oxy)phen­yl]prop-2-eno­yl}­­oxy)-3-hy­dr­oxy­butane­dioate

aSchool of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 January 2012; accepted 18 January 2012; online 25 January 2012)

The title compound, C23H30O9, has an approximate T-shape with the tert-butyl ester groups lying either side of the benzene ring. The acetyl group is almost perpendicular to the benzene ring to which it is connected [C—C—O—C torsion angle = −106.7 (3)°]. The conformation about the C=C double bond [1.331 (4) Å] is E. Linear supra­molecular chains along the a axis mediated by hy­droxy–carbonyl O—H⋯O hydrogen bonds feature in the crystal packing. The same H atom is also involved in an intra­molecular O—H⋯O inter­action.

Related literature

For background to the formation of the odorant 4-ethyl­phenol with relevance to the wine industry, see: Chatonnet et al. (1992[Chatonnet, P., Dubourdieu, D., Boidron, J. N. & Pons, M. (1992). J. Sci. Food Agric. 60, 165-178.]); Hixson et al. (2012[Hixson, J. L., Sleep, N. R., Capone, D. L., Elsey, G. M., Curtin, C. D., Sefton, M. A. & Taylor, D. K. (2012). J. Agric. Food Chem. Submitted.]); Ong & Nagel (1978[Ong, B. Y. & Nagel, C. W. (1978). Am. J. Enol. Vitic. 29, 277-281.]); Nagel & Wulf (1979[Nagel, C. W. & Wulf, L. W. (1979). Am. J. Enol. Vitic. 30, 111-116.]); Zhao & Burke (1998[Zhao, H. & Burke, T. R. (1998). Synth. Commun. 28, 737-740.]). For the preparation and characterization of 1-O-acetyl p-coumaric acid; see: Zhao & Burke (1998[Zhao, H. & Burke, T. R. (1998). Synth. Commun. 28, 737-740.]); Shimizu & Kojima (1984[Shimizu, T. & Kojima, M. (1984). J. Biochem. 95, 205-212.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30O9

  • Mr = 450.47

  • Orthorhombic, P 21 21 21

  • a = 5.7183 (2) Å

  • b = 8.7309 (3) Å

  • c = 46.9988 (19) Å

  • V = 2346.46 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.230, Tmax = 1.000

  • 9078 measured reflections

  • 4603 independent reflections

  • 3842 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.131

  • S = 1.05

  • 4603 reflections

  • 300 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1849 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯O27i 0.85 (4) 2.06 (4) 2.842 (3) 153 (4)
O16—H16⋯O30 0.85 (4) 2.26 (4) 2.688 (3) 111 (3)
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The breakdown of p-coumaric acid by D. bruxellensis to form the potent odorant 4-ethylphenol has been known for decades (Chatonnet et al., 1992). Recently, it has been found that the metabolism of the ethyl ester of p-coumaric acid by this yeast can also result in the accumulation of significant concentrations of 4-ethylphenol (Hixson et al., 2012). Existing in both the grape berry and in wine in significant concentrations (Ong & Nagel, 1978; Nagel & Wulf, 1979), the p-coumaroyl L-tartrate ester has the potential to contribute even further to the accumulation of 4-ethylphenol in finished wines and thus contribute further to the spoilage of wine.

Synthesis of the known wine component p-coumaroyl L-tartrate was attempted using di-tert-butyl L-tartrate and the 1-O-acetyl protected hydroxycinnamic acid in an analogous method to that described by Zhao and Burke (1998). The desired product was isolated and recrystallized from 30% ethyl acetate/hexane to afford a crystalline solid from which the structure was determined by X-ray crystallography to confirm the retention of the (R,R)-stereochemistry, Fig. 1.

The most prominent feature of the crystal packing is the formation of linear supramolecular chains along the a axis via hydroxyl-OH···O(carbonyl) hydrogen bonds, Fig. 2 and Table 1. The hydroxyl-H atom is bifurcated, also forming an intramolecular O–H···O hydrogen bond with the adjacent carbonyl-O atom, Table 1.

Related literature top

For background to the formation of the odorant 4-ethylphenol with relevance to the wine industry, see: Chatonnet et al. (1992); Hixson et al. (2012); Ong & Nagel (1978); Nagel & Wulf (1979); Zhao & Burke (1998). For the preparation and characterization of 1-O-acetyl p-coumaric acid; see: Zhao & Burke (1998); Shimizu & Kojima (1984).

Experimental top

1-O-Acetyl p-coumaric acid was prepared using a method analogous to that previously described by Zhao and Burke (1998), and the characterization data matched that previously described (Shimizu & Kojima, 1984). 1-O-Acetyl p-coumaric acid (0.17 g 0.82 mmol) was heated under reflux in dry benzene (10 ml) containing thionyl chloride (1 ml, 13.77 mmol). After 5 h the mixture was allowed to cool to room temperature and then concentrated in vacuo. The crude residue was taken up in dry benzene (3 ml) and added drop-wise to a solution of di-tert-butyl L-tartrate (0.13 g, 0.49 mmol) in dry pyridine (3 ml), then stirred at ambient temperature overnight. The mixture was concentrated and pyridine azeotropically removed with toluene. Purification with column chromatography (20% EtOAc/X4) and recrystallization from 30% EtOAc/X4 gave 68.1 mg (31%) of colourless plates. M.pt 416.8–417.4 K. Rf (50% EtOAc/X4): 0.57 1H NMR: (400 MHz, CDCl3) δ: 7.73 (d, 1H, J = 16.0 Hz, H7), 7.54 (app. d, 2H, J = 8.7 Hz, H3,5), 7.13 (app. d, 2H, J = 8.7 Hz, H2,6), 6.45 (d, 1H, J = 16.0 Hz, H8), 5.48 (d, 1H, J = 2.3 Hz, H2'), 4.67 (dd, 1H, J = 6.9 and 2.3 Hz, H3'), 3.20 (d, 1H, J = 6.9 Hz, OH), 2.31 (s, 3H, OCOCH3), 1.51 (s, 9H, tBu4), 1.44 (s, 9H, tBu1). 13C NMR: (600 MHz, CDCl3) δ: 170.2 (C4'), 169.3 (OCOCH3), 165.8 (C9), 165.5 (C1'), 152.4 (C1), 145.5 (C7), 131.9 (C4), 129.6 (C3,5), 122.3 (C2,6), 116.7 (C8), 84.0 (C1(CH3)3), 83.4 (C4(CH3)3), 73.5 (C2'), 71.0 (C3'), 28.1 (C4(CH3)3), 28.0 (C1(CH3)3), 21.3 (OCOCH3). LRP (+EI) m/z (%): 450 (M+, <1), 408 (2), 352 (10), 338 (5), 321 (12), 296 (63), 278 (6), 251 (6), 206 (7), 189 (46), 164 (79), 147 (100), 119 (14), 57 (37), 41 (13). HRMS calculated for C23H30O9 [M]+ 450.1890, found 450.1891.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95–1.00 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The acid H-atom was located in a difference Fourier map and was refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along the a axis mediated by O—H···O hydrogen bonds shown as orange dashed lines.
1,4-Di-tert-butyl (2R,3R)-2-({(2E)- 3-[4-(acetyloxy)phenyl]prop-2-enoyl}oxy)-3-hydroxybutanedioate top
Crystal data top
C23H30O9F(000) = 960
Mr = 450.47Dx = 1.275 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 2558 reflections
a = 5.7183 (2) Åθ = 2.8–74.4°
b = 8.7309 (3) ŵ = 0.82 mm1
c = 46.9988 (19) ÅT = 100 K
V = 2346.46 (15) Å3Plate, colourless
Z = 40.35 × 0.10 × 0.02 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4603 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3842 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.4041 pixels mm-1θmax = 74.6°, θmin = 3.8°
ω scanh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 107
Tmin = 0.230, Tmax = 1.000l = 5658
9078 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0669P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4603 reflectionsΔρmax = 0.28 e Å3
300 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 1849 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Crystal data top
C23H30O9V = 2346.46 (15) Å3
Mr = 450.47Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.7183 (2) ŵ = 0.82 mm1
b = 8.7309 (3) ÅT = 100 K
c = 46.9988 (19) Å0.35 × 0.10 × 0.02 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4603 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3842 reflections with I > 2σ(I)
Tmin = 0.230, Tmax = 1.000Rint = 0.044
9078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131Δρmax = 0.28 e Å3
S = 1.05Δρmin = 0.30 e Å3
4603 reflectionsAbsolute structure: Flack (1983), 1849 Friedel pairs
300 parametersAbsolute structure parameter: 0.0 (2)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.2022 (4)0.5527 (2)0.00826 (4)0.0253 (5)
O90.3426 (4)0.3380 (2)0.01232 (4)0.0263 (4)
O130.3891 (3)0.9744 (2)0.14782 (4)0.0188 (4)
O160.2916 (4)1.1953 (2)0.19343 (5)0.0239 (4)
H160.147 (7)1.178 (5)0.1910 (8)0.042 (11)*
O180.6765 (4)0.8572 (2)0.12326 (4)0.0238 (4)
O200.6536 (3)1.2024 (2)0.13224 (4)0.0198 (4)
O240.3937 (3)0.8007 (2)0.20890 (4)0.0201 (4)
O270.8203 (3)1.2333 (2)0.17558 (4)0.0239 (4)
O300.0551 (4)0.9341 (2)0.20280 (4)0.0237 (5)
C10.0842 (5)0.5915 (3)0.01690 (6)0.0223 (6)
C20.1778 (5)0.7016 (3)0.03504 (6)0.0225 (6)
H20.32710.74500.03140.027*
C30.0493 (5)0.7466 (3)0.05852 (6)0.0206 (6)
H30.11200.82100.07110.025*
C40.1717 (5)0.6843 (3)0.06398 (6)0.0199 (6)
C50.2585 (5)0.5716 (3)0.04550 (6)0.0211 (6)
H50.40740.52720.04900.025*
C60.1294 (5)0.5244 (3)0.02212 (6)0.0230 (6)
H60.18760.44670.00990.028*
C80.3134 (5)0.4121 (3)0.00867 (6)0.0221 (6)
C100.3277 (5)0.7401 (3)0.08639 (6)0.0211 (6)
H100.48260.70080.08610.025*
C110.2799 (5)0.8390 (3)0.10715 (6)0.0203 (6)
H110.12590.87750.10980.024*
C120.4738 (5)0.8874 (3)0.12611 (6)0.0185 (6)
C140.5580 (5)1.0245 (3)0.16863 (6)0.0167 (5)
H140.67220.94000.17230.020*
C150.4241 (5)1.0593 (3)0.19588 (6)0.0183 (6)
H150.53911.07230.21170.022*
C170.3823 (7)0.3715 (3)0.03830 (7)0.0339 (8)
H17A0.52290.30730.03790.051*
H17B0.25460.31510.04750.051*
H17C0.41460.46520.04910.051*
C190.6905 (5)1.1681 (3)0.15925 (6)0.0178 (5)
C210.7821 (5)1.3308 (3)0.11844 (6)0.0223 (6)
C220.6898 (6)1.3215 (4)0.08806 (6)0.0286 (6)
H22A0.52361.34890.08780.043*
H22B0.70911.21690.08090.043*
H22C0.77721.39270.07600.043*
C230.2640 (5)0.9244 (3)0.20304 (6)0.0174 (6)
C250.2773 (5)0.6517 (3)0.21600 (6)0.0231 (6)
C260.4859 (5)0.5481 (3)0.22185 (7)0.0296 (7)
H26A0.58110.53910.20460.044*
H26B0.43040.44640.22750.044*
H26C0.58060.59210.23720.044*
C281.0416 (5)1.3012 (4)0.11923 (7)0.0325 (7)
H28A1.09691.30640.13890.049*
H28B1.12261.37870.10780.049*
H28C1.07411.19920.11150.049*
C290.7116 (6)1.4816 (3)0.13230 (7)0.0274 (7)
H29A0.76851.48390.15200.041*
H29B0.54081.49080.13220.041*
H29C0.78011.56700.12160.041*
C300.1389 (6)0.5973 (4)0.19021 (7)0.0311 (7)
H30A0.24190.59350.17360.047*
H30B0.00990.66860.18650.047*
H30C0.07570.49490.19390.047*
C310.1284 (5)0.6724 (4)0.24249 (7)0.0296 (7)
H31A0.22280.71950.25760.044*
H31B0.07140.57240.24890.044*
H31C0.00490.73880.23810.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0322 (11)0.0166 (9)0.0271 (11)0.0050 (9)0.0090 (9)0.0005 (8)
O90.0275 (11)0.0233 (10)0.0280 (11)0.0045 (9)0.0019 (9)0.0005 (8)
O130.0177 (9)0.0169 (9)0.0217 (10)0.0009 (8)0.0013 (8)0.0032 (7)
O160.0225 (11)0.0137 (9)0.0356 (12)0.0024 (9)0.0004 (9)0.0015 (8)
O180.0204 (11)0.0193 (9)0.0318 (11)0.0008 (8)0.0023 (9)0.0052 (8)
O200.0217 (10)0.0151 (9)0.0226 (10)0.0043 (8)0.0012 (8)0.0019 (7)
O240.0179 (9)0.0131 (9)0.0293 (11)0.0016 (8)0.0003 (8)0.0048 (7)
O270.0244 (11)0.0183 (9)0.0290 (11)0.0032 (8)0.0056 (9)0.0016 (8)
O300.0233 (11)0.0180 (10)0.0299 (12)0.0001 (8)0.0004 (9)0.0000 (8)
C10.0289 (15)0.0154 (12)0.0225 (15)0.0040 (12)0.0026 (13)0.0023 (11)
C20.0227 (14)0.0180 (12)0.0268 (14)0.0017 (12)0.0005 (12)0.0021 (11)
C30.0221 (14)0.0155 (12)0.0242 (15)0.0023 (11)0.0019 (11)0.0016 (11)
C40.0204 (14)0.0167 (12)0.0225 (13)0.0026 (11)0.0012 (11)0.0010 (10)
C50.0228 (14)0.0158 (12)0.0248 (14)0.0008 (11)0.0022 (11)0.0000 (10)
C60.0297 (16)0.0175 (12)0.0217 (14)0.0003 (12)0.0018 (12)0.0023 (10)
C80.0221 (14)0.0163 (12)0.0277 (15)0.0015 (11)0.0015 (13)0.0033 (11)
C100.0188 (14)0.0196 (13)0.0248 (14)0.0014 (11)0.0008 (12)0.0012 (10)
C110.0187 (13)0.0184 (13)0.0238 (14)0.0015 (11)0.0008 (11)0.0007 (10)
C120.0197 (15)0.0115 (12)0.0242 (15)0.0023 (10)0.0004 (11)0.0006 (10)
C140.0165 (13)0.0119 (11)0.0217 (14)0.0020 (10)0.0026 (11)0.0007 (10)
C150.0206 (13)0.0125 (12)0.0218 (14)0.0001 (11)0.0021 (11)0.0002 (10)
C170.048 (2)0.0223 (14)0.0309 (17)0.0038 (14)0.0075 (16)0.0023 (13)
C190.0158 (13)0.0135 (12)0.0241 (14)0.0003 (10)0.0005 (11)0.0011 (10)
C210.0229 (14)0.0152 (12)0.0288 (15)0.0001 (11)0.0060 (12)0.0056 (11)
C220.0310 (16)0.0275 (15)0.0274 (15)0.0009 (13)0.0054 (14)0.0060 (12)
C230.0182 (14)0.0176 (13)0.0165 (13)0.0003 (11)0.0006 (10)0.0006 (10)
C250.0247 (15)0.0135 (12)0.0311 (16)0.0033 (11)0.0002 (12)0.0061 (11)
C260.0258 (15)0.0207 (15)0.042 (2)0.0004 (12)0.0018 (13)0.0086 (14)
C280.0271 (16)0.0329 (17)0.0375 (19)0.0016 (14)0.0079 (14)0.0106 (15)
C290.0335 (17)0.0134 (13)0.0353 (17)0.0033 (12)0.0024 (14)0.0006 (11)
C300.0314 (17)0.0219 (14)0.0400 (18)0.0030 (13)0.0073 (14)0.0039 (13)
C310.0267 (16)0.0272 (15)0.0348 (16)0.0034 (13)0.0022 (13)0.0112 (13)
Geometric parameters (Å, º) top
O7—C81.383 (3)C14—C191.530 (3)
O7—C11.403 (3)C14—H141.0000
O9—C81.192 (3)C15—C231.529 (4)
O13—C121.361 (3)C15—H151.0000
O13—C141.442 (3)C17—H17A0.9800
O16—C151.414 (3)C17—H17B0.9800
O16—H160.85 (4)C17—H17C0.9800
O18—C121.196 (4)C21—C281.507 (4)
O20—C191.321 (3)C21—C291.523 (4)
O20—C211.489 (3)C21—C221.524 (4)
O24—C231.339 (3)C22—H22A0.9800
O24—C251.499 (3)C22—H22B0.9800
O27—C191.210 (3)C22—H22C0.9800
O30—C231.198 (3)C25—C311.519 (4)
C1—C61.377 (4)C25—C261.522 (4)
C1—C21.392 (4)C25—C301.523 (4)
C2—C31.383 (4)C26—H26A0.9800
C2—H20.9500C26—H26B0.9800
C3—C41.400 (4)C26—H26C0.9800
C3—H30.9500C28—H28A0.9800
C4—C51.403 (4)C28—H28B0.9800
C4—C101.464 (4)C28—H28C0.9800
C5—C61.387 (4)C29—H29A0.9800
C5—H50.9500C29—H29B0.9800
C6—H60.9500C29—H29C0.9800
C8—C171.490 (4)C31—H31A0.9800
C10—C111.331 (4)C31—H31B0.9800
C10—H100.9500C31—H31C0.9800
C11—C121.484 (4)C30—H30A0.9800
C11—H110.9500C30—H30B0.9800
C14—C151.523 (4)C30—H30C0.9800
C8—O7—C1116.5 (2)O27—C19—C14120.4 (2)
C12—O13—C14116.1 (2)O20—C19—C14112.6 (2)
C15—O16—H16113 (3)O20—C21—C28110.3 (2)
C19—O20—C21120.7 (2)O20—C21—C29109.5 (2)
C23—O24—C25120.0 (2)C28—C21—C29113.5 (3)
C6—C1—C2121.7 (3)O20—C21—C22101.4 (2)
C6—C1—O7118.3 (3)C28—C21—C22110.8 (3)
C2—C1—O7119.9 (3)C29—C21—C22110.8 (2)
C3—C2—C1118.7 (3)C21—C22—H22A109.5
C3—C2—H2120.6C21—C22—H22B109.5
C1—C2—H2120.6H22A—C22—H22B109.5
C2—C3—C4121.0 (3)C21—C22—H22C109.5
C2—C3—H3119.5H22A—C22—H22C109.5
C4—C3—H3119.5H22B—C22—H22C109.5
C3—C4—C5118.6 (3)O30—C23—O24127.7 (3)
C3—C4—C10123.6 (3)O30—C23—C15122.7 (3)
C5—C4—C10117.6 (3)O24—C23—C15109.6 (2)
C6—C5—C4120.7 (3)O24—C25—C31109.1 (2)
C6—C5—H5119.6O24—C25—C26102.0 (2)
C4—C5—H5119.6C31—C25—C26111.2 (2)
C1—C6—C5119.2 (3)O24—C25—C30108.9 (2)
C1—C6—H6120.4C31—C25—C30113.5 (3)
C5—C6—H6120.4C26—C25—C30111.5 (3)
O9—C8—O7122.3 (3)C25—C26—H26A109.5
O9—C8—C17127.4 (3)C25—C26—H26B109.5
O7—C8—C17110.2 (2)H26A—C26—H26B109.5
C11—C10—C4128.2 (3)C25—C26—H26C109.5
C11—C10—H10115.9H26A—C26—H26C109.5
C4—C10—H10115.9H26B—C26—H26C109.5
C10—C11—C12118.1 (3)C21—C28—H28A109.5
C10—C11—H11120.9C21—C28—H28B109.5
C12—C11—H11120.9H28A—C28—H28B109.5
O18—C12—O13123.5 (3)C21—C28—H28C109.5
O18—C12—C11126.5 (3)H28A—C28—H28C109.5
O13—C12—C11110.1 (2)H28B—C28—H28C109.5
O13—C14—C15107.1 (2)C21—C29—H29A109.5
O13—C14—C19112.6 (2)C21—C29—H29B109.5
C15—C14—C19109.2 (2)H29A—C29—H29B109.5
O13—C14—H14109.3C21—C29—H29C109.5
C15—C14—H14109.3H29A—C29—H29C109.5
C19—C14—H14109.3H29B—C29—H29C109.5
O16—C15—C14111.6 (2)C25—C31—H31A109.5
O16—C15—C23110.2 (2)C25—C31—H31B109.5
C14—C15—C23109.4 (2)H31A—C31—H31B109.5
O16—C15—H15108.5C25—C31—H31C109.5
C14—C15—H15108.5H31A—C31—H31C109.5
C23—C15—H15108.5H31B—C31—H31C109.5
C8—C17—H17A109.5C25—C30—H30A109.5
C8—C17—H17B109.5C25—C30—H30B109.5
H17A—C17—H17B109.5H30A—C30—H30B109.5
C8—C17—H17C109.5C25—C30—H30C109.5
H17A—C17—H17C109.5H30A—C30—H30C109.5
H17B—C17—H17C109.5H30B—C30—H30C109.5
O27—C19—O20126.9 (2)
C8—O7—C1—C676.9 (3)O13—C14—C15—O1672.5 (3)
C8—O7—C1—C2106.7 (3)C19—C14—C15—O1649.7 (3)
C6—C1—C2—C31.5 (4)O13—C14—C15—C2349.7 (3)
O7—C1—C2—C3174.9 (3)C19—C14—C15—C23171.9 (2)
C1—C2—C3—C40.6 (4)C21—O20—C19—O271.7 (4)
C2—C3—C4—C51.7 (4)C21—O20—C19—C14175.0 (2)
C2—C3—C4—C10172.4 (3)O13—C14—C19—O27172.2 (2)
C3—C4—C5—C60.8 (4)C15—C14—C19—O2753.4 (3)
C10—C4—C5—C6173.6 (3)O13—C14—C19—O2010.8 (3)
C2—C1—C6—C52.3 (4)C15—C14—C19—O20129.6 (2)
O7—C1—C6—C5174.1 (2)C19—O20—C21—C2860.5 (3)
C4—C5—C6—C11.1 (4)C19—O20—C21—C2965.0 (3)
C1—O7—C8—O912.1 (4)C19—O20—C21—C22177.9 (2)
C1—O7—C8—C17167.0 (3)C25—O24—C23—O300.5 (4)
C3—C4—C10—C1110.1 (5)C25—O24—C23—C15178.7 (2)
C5—C4—C10—C11175.8 (3)O16—C15—C23—O308.7 (4)
C4—C10—C11—C12175.2 (3)C14—C15—C23—O30114.4 (3)
C14—O13—C12—O182.7 (4)O16—C15—C23—O24172.1 (2)
C14—O13—C12—C11177.6 (2)C14—C15—C23—O2464.8 (3)
C10—C11—C12—O187.1 (4)C23—O24—C25—C3160.6 (3)
C10—C11—C12—O13173.3 (2)C23—O24—C25—C26178.3 (2)
C12—O13—C14—C15157.2 (2)C23—O24—C25—C3063.8 (3)
C12—O13—C14—C1982.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O27i0.85 (4)2.06 (4)2.842 (3)153 (4)
O16—H16···O300.85 (4)2.26 (4)2.688 (3)111 (3)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H30O9
Mr450.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.7183 (2), 8.7309 (3), 46.9988 (19)
V3)2346.46 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.35 × 0.10 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.230, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9078, 4603, 3842
Rint0.044
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.131, 1.05
No. of reflections4603
No. of parameters300
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.30
Absolute structureFlack (1983), 1849 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O27i0.85 (4)2.06 (4)2.842 (3)153 (4)
O16—H16···O300.85 (4)2.26 (4)2.688 (3)111 (3)
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.

Acknowledgements

This project was supported by the School of Agriculture, Food and Wine, the University of Adelaide, as well as by Australia's grape growers and winemakers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. The Ministry of Higher Education (Malaysia) is thanked for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChatonnet, P., Dubourdieu, D., Boidron, J. N. & Pons, M. (1992). J. Sci. Food Agric. 60, 165–178.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHixson, J. L., Sleep, N. R., Capone, D. L., Elsey, G. M., Curtin, C. D., Sefton, M. A. & Taylor, D. K. (2012). J. Agric. Food Chem. Submitted.  Google Scholar
First citationNagel, C. W. & Wulf, L. W. (1979). Am. J. Enol. Vitic. 30, 111–116.  CAS Google Scholar
First citationOng, B. Y. & Nagel, C. W. (1978). Am. J. Enol. Vitic. 29, 277–281.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, T. & Kojima, M. (1984). J. Biochem. 95, 205–212.  CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H. & Burke, T. R. (1998). Synth. Commun. 28, 737–740.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o509-o510
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds