metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′,6,6′-Tetra­chloro-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanylyl­­idene)]}copper(II)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 7 January 2012; accepted 16 January 2012; online 21 January 2012)

In the title Schiff base complex, [Cu(C19H16Cl4N2O2)], the geometry around the CuII atom is distorted square-planar defined by the N2O2 donor atoms of the coordinated ligand. The dihedral angle between the substituted benzene rings is 29.95 (16)°. In the crystal, mol­ecules are linked along the b axis, forming individual dimers through C—H⋯O inter­actions. The crystal structure is further stabilized by inter­molecular ππ inter­actions [centroid–centroid distance = 3.6131 (17) Å].

Related literature

For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For applications of Schiff bases in coordination chemistry, see, for example: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem., 23, 109-112.]). For related structures see, for example: Ghaemi et al. (2011[Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445-m1446.]); Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, m941.], 2012[Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012). Acta Cryst. E68, m82.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H16Cl4N2O2)]

  • Mr = 509.68

  • Monoclinic, P 21 /n

  • a = 12.4002 (10) Å

  • b = 8.4570 (7) Å

  • c = 20.0316 (19) Å

  • β = 97.278 (4)°

  • V = 2083.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 291 K

  • 0.25 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.694, Tmax = 0.871

  • 18291 measured reflections

  • 4988 independent reflections

  • 2882 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.105

  • S = 1.00

  • 4988 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.56 3.331 (4) 136
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011).

The geometry around CuII is a distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the substituted benzene rings is 29.95 (16)°. In the crystal structure the molecules are linked together along the b-axis, forming individual dimers through the intermolecular C—H···O interactions (Table 1, Fig. 2). The crystal structure is further stabilized by the intermolecular π-π interaction [Cg1···Cg1ii = 3.6131 (17)Å; (ii) 1 - X, 1- Y,-Z; Cg1 is the centroid of Cu(1)/O(2)/C(19)/C(14)/C(13)/N(2) ring].

Related literature top

For standard values of bond lengths, see: Allen et al. (1987). For applications of Schiff bases in coordination chemistry, see, for example: Granovski et al. (1993); Blower (1998). For related structures see, for example: Ghaemi et al. (2011); Kargar et al. (2011, 2012).

Experimental top

The title compound was synthesized by adding 3,5-dichloro-salicylaldehyde-2,2-dimethyl-1, 3-propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Dark-green single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. A part of the packing diagram of the title compound showing individual dimer formation through the intermolecular C—H···O intearctions (dashed lines). Only the H atoms involved in the interactions are shown.
{4,4',6,6'-Tetrachloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]}copper(II) top
Crystal data top
[Cu(C19H16Cl4N2O2)]F(000) = 1028
Mr = 509.68Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2540 reflections
a = 12.4002 (10) Åθ = 2.5–27.4°
b = 8.4570 (7) ŵ = 1.58 mm1
c = 20.0316 (19) ÅT = 291 K
β = 97.278 (4)°Block, dark-green
V = 2083.8 (3) Å30.25 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4988 independent reflections
Radiation source: fine-focus sealed tube2882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1614
Tmin = 0.694, Tmax = 0.871k = 911
18291 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
4988 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(C19H16Cl4N2O2)]V = 2083.8 (3) Å3
Mr = 509.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4002 (10) ŵ = 1.58 mm1
b = 8.4570 (7) ÅT = 291 K
c = 20.0316 (19) Å0.25 × 0.18 × 0.09 mm
β = 97.278 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2882 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.871Rint = 0.060
18291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.00Δρmax = 0.38 e Å3
4988 reflectionsΔρmin = 0.36 e Å3
255 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5462 (3)0.8875 (4)0.14363 (17)0.0370 (8)
C20.6238 (3)0.9020 (4)0.20186 (18)0.0428 (9)
C30.6049 (3)0.9834 (4)0.25795 (18)0.0468 (9)
H30.65770.98740.29530.056*
C40.5058 (3)1.0605 (4)0.25883 (18)0.0486 (9)
C50.4286 (3)1.0532 (4)0.20422 (18)0.0430 (9)
H50.36291.10570.20510.052*
C60.4466 (3)0.9681 (4)0.14670 (17)0.0365 (8)
C70.3634 (3)0.9733 (4)0.08983 (17)0.0398 (8)
H70.30241.03430.09440.048*
C80.2764 (3)0.9331 (4)0.02093 (17)0.0442 (9)
H8A0.30770.96570.06070.053*
H8B0.23271.02010.00780.053*
C90.2022 (3)0.7905 (4)0.03888 (18)0.0414 (8)
C100.1184 (3)0.7758 (5)0.0105 (2)0.0725 (13)
H10A0.15480.77610.05570.109*
H10B0.07880.67880.00220.109*
H10C0.06890.86340.00450.109*
C110.1447 (3)0.8178 (5)0.1105 (2)0.0722 (13)
H11A0.09180.73610.12170.108*
H11B0.19730.81560.14180.108*
H11C0.10910.91880.11270.108*
C120.2678 (2)0.6363 (4)0.03537 (18)0.0436 (9)
H12A0.27300.59530.01010.052*
H12B0.22830.55930.06490.052*
C130.4035 (3)0.5747 (4)0.10521 (18)0.0411 (9)
H130.34830.51860.13050.049*
C140.5102 (3)0.5676 (4)0.12688 (18)0.0394 (8)
C150.5173 (3)0.4938 (4)0.18871 (19)0.0490 (10)
H150.45480.45450.21380.059*
C160.6153 (3)0.4793 (4)0.21236 (18)0.0505 (10)
C170.7093 (3)0.5351 (4)0.17506 (18)0.0464 (9)
H170.77610.52360.19100.056*
C180.7030 (2)0.6076 (4)0.11442 (17)0.0374 (8)
C190.6035 (2)0.6294 (4)0.08710 (17)0.0354 (8)
Cl10.74867 (8)0.80938 (13)0.20120 (6)0.0735 (4)
Cl20.48425 (9)1.16671 (15)0.33020 (6)0.0774 (4)
Cl30.62354 (9)0.38486 (16)0.28877 (6)0.0822 (4)
Cl40.82198 (6)0.67591 (10)0.06837 (5)0.0476 (2)
Cu10.48016 (3)0.76529 (5)0.01057 (2)0.03872 (14)
N10.3649 (2)0.9025 (3)0.03362 (14)0.0384 (7)
N20.37799 (19)0.6517 (3)0.05406 (14)0.0374 (7)
O10.57082 (17)0.8082 (3)0.09215 (12)0.0448 (6)
O20.60372 (17)0.6982 (3)0.02938 (12)0.0431 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (19)0.035 (2)0.040 (2)0.0035 (15)0.0030 (16)0.0027 (16)
C20.0335 (19)0.038 (2)0.055 (2)0.0000 (15)0.0015 (17)0.0029 (18)
C30.048 (2)0.045 (2)0.045 (2)0.0118 (17)0.0026 (18)0.0024 (18)
C40.050 (2)0.054 (2)0.042 (2)0.0112 (19)0.0095 (19)0.0025 (18)
C50.040 (2)0.045 (2)0.045 (2)0.0019 (17)0.0106 (18)0.0005 (18)
C60.0335 (19)0.036 (2)0.040 (2)0.0006 (15)0.0041 (16)0.0032 (16)
C70.0345 (19)0.037 (2)0.049 (2)0.0021 (15)0.0108 (17)0.0023 (17)
C80.046 (2)0.045 (2)0.040 (2)0.0141 (17)0.0017 (17)0.0079 (17)
C90.0311 (18)0.047 (2)0.046 (2)0.0060 (15)0.0005 (16)0.0039 (17)
C100.044 (2)0.084 (3)0.094 (4)0.007 (2)0.028 (2)0.004 (3)
C110.070 (3)0.067 (3)0.070 (3)0.010 (2)0.027 (2)0.001 (2)
C120.0301 (18)0.046 (2)0.055 (2)0.0014 (16)0.0085 (17)0.0046 (18)
C130.0324 (19)0.036 (2)0.053 (2)0.0017 (15)0.0012 (17)0.0003 (17)
C140.0326 (19)0.036 (2)0.049 (2)0.0016 (15)0.0036 (17)0.0009 (17)
C150.040 (2)0.051 (2)0.055 (3)0.0033 (17)0.0005 (19)0.0141 (19)
C160.044 (2)0.057 (2)0.052 (3)0.0002 (18)0.0116 (19)0.018 (2)
C170.039 (2)0.048 (2)0.056 (2)0.0011 (17)0.0177 (19)0.0066 (19)
C180.0329 (18)0.0348 (19)0.045 (2)0.0006 (14)0.0066 (16)0.0010 (16)
C190.0337 (19)0.0294 (18)0.043 (2)0.0025 (14)0.0034 (16)0.0011 (16)
Cl10.0471 (6)0.0767 (8)0.0895 (9)0.0202 (5)0.0185 (6)0.0163 (6)
Cl20.0730 (8)0.1044 (9)0.0569 (7)0.0119 (7)0.0172 (6)0.0287 (6)
Cl30.0600 (7)0.1171 (10)0.0709 (8)0.0016 (6)0.0130 (6)0.0493 (7)
Cl40.0320 (5)0.0540 (6)0.0568 (6)0.0024 (4)0.0058 (4)0.0025 (5)
Cu10.0315 (2)0.0416 (3)0.0435 (3)0.00221 (18)0.00652 (19)0.0001 (2)
N10.0312 (15)0.0406 (17)0.0418 (18)0.0036 (12)0.0011 (13)0.0022 (14)
N20.0293 (15)0.0356 (16)0.0481 (18)0.0012 (12)0.0086 (13)0.0008 (14)
O10.0317 (13)0.0533 (15)0.0483 (16)0.0058 (11)0.0006 (11)0.0046 (12)
O20.0321 (13)0.0509 (15)0.0469 (15)0.0002 (10)0.0073 (11)0.0083 (12)
Geometric parameters (Å, º) top
C1—O11.299 (4)C11—H11A0.9600
C1—C61.418 (4)C11—H11B0.9600
C1—C21.420 (4)C11—H11C0.9600
C2—C31.362 (5)C12—N21.467 (4)
C2—Cl11.737 (3)C12—H12A0.9700
C3—C41.394 (5)C12—H12B0.9700
C3—H30.9300C13—N21.287 (4)
C4—C51.360 (5)C13—C141.444 (4)
C4—Cl21.737 (4)C13—H130.9300
C5—C61.400 (4)C14—C151.399 (5)
C5—H50.9300C14—C191.419 (4)
C6—C71.437 (4)C15—C161.365 (4)
C7—N11.278 (4)C15—H150.9300
C7—H70.9300C16—C171.385 (5)
C8—N11.470 (4)C16—Cl31.741 (3)
C8—C91.532 (4)C17—C181.372 (4)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—C191.424 (4)
C9—C101.528 (5)C18—Cl41.737 (3)
C9—C121.534 (4)C19—O21.294 (4)
C9—C111.537 (5)Cu1—O11.898 (2)
C10—H10A0.9600Cu1—O21.903 (2)
C10—H10B0.9600Cu1—N11.942 (3)
C10—H10C0.9600Cu1—N21.947 (3)
O1—C1—C6125.2 (3)H11A—C11—H11C109.5
O1—C1—C2119.6 (3)H11B—C11—H11C109.5
C6—C1—C2115.2 (3)N2—C12—C9114.7 (3)
C3—C2—C1123.5 (3)N2—C12—H12A108.6
C3—C2—Cl1118.7 (3)C9—C12—H12A108.6
C1—C2—Cl1117.8 (3)N2—C12—H12B108.6
C2—C3—C4119.3 (3)C9—C12—H12B108.6
C2—C3—H3120.3H12A—C12—H12B107.6
C4—C3—H3120.3N2—C13—C14126.0 (3)
C5—C4—C3120.0 (3)N2—C13—H13117.0
C5—C4—Cl2121.3 (3)C14—C13—H13117.0
C3—C4—Cl2118.7 (3)C15—C14—C19121.5 (3)
C4—C5—C6121.1 (3)C15—C14—C13116.6 (3)
C4—C5—H5119.5C19—C14—C13121.9 (3)
C6—C5—H5119.5C16—C15—C14120.4 (3)
C5—C6—C1120.8 (3)C16—C15—H15119.8
C5—C6—C7117.6 (3)C14—C15—H15119.8
C1—C6—C7121.5 (3)C15—C16—C17120.5 (3)
N1—C7—C6126.5 (3)C15—C16—Cl3120.0 (3)
N1—C7—H7116.7C17—C16—Cl3119.5 (3)
C6—C7—H7116.7C18—C17—C16119.4 (3)
N1—C8—C9113.9 (3)C18—C17—H17120.3
N1—C8—H8A108.8C16—C17—H17120.3
C9—C8—H8A108.8C17—C18—C19123.2 (3)
N1—C8—H8B108.8C17—C18—Cl4118.6 (2)
C9—C8—H8B108.8C19—C18—Cl4118.2 (3)
H8A—C8—H8B107.7O2—C19—C14125.2 (3)
C10—C9—C8110.5 (3)O2—C19—C18119.9 (3)
C10—C9—C12107.6 (3)C14—C19—C18114.9 (3)
C8—C9—C12111.1 (3)O1—Cu1—O289.91 (10)
C10—C9—C11110.1 (3)O1—Cu1—N193.14 (11)
C8—C9—C11107.1 (3)O2—Cu1—N1159.14 (11)
C12—C9—C11110.6 (3)O1—Cu1—N2158.73 (10)
C9—C10—H10A109.5O2—Cu1—N293.67 (10)
C9—C10—H10B109.5N1—Cu1—N290.94 (11)
H10A—C10—H10B109.5C7—N1—C8118.7 (3)
C9—C10—H10C109.5C7—N1—Cu1125.7 (2)
H10A—C10—H10C109.5C8—N1—Cu1115.6 (2)
H10B—C10—H10C109.5C13—N2—C12119.3 (3)
C9—C11—H11A109.5C13—N2—Cu1125.0 (2)
C9—C11—H11B109.5C12—N2—Cu1115.0 (2)
H11A—C11—H11B109.5C1—O1—Cu1127.5 (2)
C9—C11—H11C109.5C19—O2—Cu1126.8 (2)
O1—C1—C2—C3179.8 (3)C15—C14—C19—C181.1 (5)
C6—C1—C2—C31.6 (5)C13—C14—C19—C18177.7 (3)
O1—C1—C2—Cl10.7 (4)C17—C18—C19—O2179.7 (3)
C6—C1—C2—Cl1178.9 (2)Cl4—C18—C19—O20.1 (4)
C1—C2—C3—C41.5 (5)C17—C18—C19—C141.1 (5)
Cl1—C2—C3—C4179.0 (3)Cl4—C18—C19—C14178.7 (2)
C2—C3—C4—C50.4 (5)C6—C7—N1—C8174.7 (3)
C2—C3—C4—Cl2178.8 (3)C6—C7—N1—Cu11.0 (5)
C3—C4—C5—C60.5 (5)C9—C8—N1—C7112.5 (3)
Cl2—C4—C5—C6179.7 (3)C9—C8—N1—Cu171.4 (3)
C4—C5—C6—C10.3 (5)O1—Cu1—N1—C75.6 (3)
C4—C5—C6—C7176.7 (3)O2—Cu1—N1—C7103.6 (4)
O1—C1—C6—C5178.7 (3)N2—Cu1—N1—C7153.5 (3)
C2—C1—C6—C50.6 (5)O1—Cu1—N1—C8170.2 (2)
O1—C1—C6—C72.5 (5)O2—Cu1—N1—C872.2 (4)
C2—C1—C6—C7175.6 (3)N2—Cu1—N1—C830.7 (2)
C5—C6—C7—N1179.3 (3)C14—C13—N2—C12174.9 (3)
C1—C6—C7—N14.3 (5)C14—C13—N2—Cu14.7 (5)
N1—C8—C9—C1081.1 (4)C9—C12—N2—C13118.0 (3)
N1—C8—C9—C1238.1 (4)C9—C12—N2—Cu170.9 (3)
N1—C8—C9—C11159.0 (3)O1—Cu1—N2—C13103.4 (3)
C10—C9—C12—N2153.9 (3)O2—Cu1—N2—C134.1 (3)
C8—C9—C12—N233.0 (4)N1—Cu1—N2—C13155.5 (3)
C11—C9—C12—N285.8 (4)O1—Cu1—N2—C1267.2 (4)
N2—C13—C14—C15172.0 (3)O2—Cu1—N2—C12166.4 (2)
N2—C13—C14—C199.1 (5)N1—Cu1—N2—C1233.9 (2)
C19—C14—C15—C160.1 (5)C6—C1—O1—Cu14.6 (5)
C13—C14—C15—C16178.7 (3)C2—C1—O1—Cu1177.4 (2)
C14—C15—C16—C171.0 (6)O2—Cu1—O1—C1166.7 (3)
C14—C15—C16—Cl3179.1 (3)N1—Cu1—O1—C17.4 (3)
C15—C16—C17—C181.0 (6)N2—Cu1—O1—C193.3 (4)
Cl3—C16—C17—C18179.1 (3)C14—C19—O2—Cu110.9 (5)
C16—C17—C18—C190.1 (5)C18—C19—O2—Cu1170.7 (2)
C16—C17—C18—Cl4179.7 (3)O1—Cu1—O2—C19170.8 (3)
C15—C14—C19—O2179.6 (3)N1—Cu1—O2—C1990.6 (4)
C13—C14—C19—O20.8 (5)N2—Cu1—O2—C1911.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.563.331 (4)136
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C19H16Cl4N2O2)]
Mr509.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)12.4002 (10), 8.4570 (7), 20.0316 (19)
β (°) 97.278 (4)
V3)2083.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.25 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.694, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
18291, 4988, 2882
Rint0.060
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.105, 1.00
No. of reflections4988
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.563.331 (4)136
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

HK and SA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem., 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445–m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, m941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012). Acta Cryst. E68, m82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds