organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o553-o554

4,5-Di­iodo-2-phenyl-1H-imidazole

aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic, and bInstitute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
*Correspondence e-mail: zdenka.padelkova@upce.cz

(Received 20 December 2011; accepted 24 January 2012; online 31 January 2012)

The structure of the title compound, C9H6I2N2, contains two symmetry-independent mol­ecules. The inter­planar angles between the imidazole and phenyl ring planes are 16.35 (3) and 17.48 (6)°. Mol­ecules are connected via N—H⋯N hydrogen bonds to form zigzag chains along the b axis. The title compound is the first example of a structurally characterized 4,5-diiodo­imidazole with an organic substituent in the 2-position and without protection on the N—H group of imidazole.

Related literature

For the structures of various related compounds, see: Delest et al. (2008[Delest, B., Nshimyumukiza, P., Fasbender, O., Tinant, B., Marchand-Brynaert, J., Darro, F. & Robiette, R. (2008). J. Org. Chem. 73, 6816-6823.]); Poverlein et al. (2007[Poverlein, C., Jacobi, N., Mayer, P. & Lindel, T. (2007). Synthesis, pp. 3620-3626.]); Panday et al. (2000[Panday, N., Canac, Y. & Vasella, A. (2000). Helv. Chim. Acta, 83, 58-79.]); Phillips et al. (1997[Phillips, J. G., Fadnis, L. & Williams, D. R. (1997). Tetrahedron Lett. 38, 7835-7838.]); Terinek & Vasella (2003[Terinek, M. & Vasella, A. (2003). Helv. Chim. Acta, 86, 3482-3509.]); Mukai & Nishikawa (2010a[Mukai, T. & Nishikawa, K. (2010a). Anal. Sci. X-ray Struct. Anal. Online, 26, 31-32.],b[Mukai, T. & Nishikawa, K. (2010b). Solid State Sci. 12, 783-788.]); Noland et al. (2003[Noland, W. E., Cole, K. P. & Britton, D. (2003). Acta Cryst. E59, o458-o460.]); Dou & Weiss (1992[Dou, S. & Weiss, A. (1992). Z. Naturforsch. Teil A, 47, 177-181.]); Nagatomo et al. (1995[Nagatomo, S., Takeda, S., Tamura, H. & Nakamura, N. (1995). Bull. Chem. Soc. Jpn, 68, 2783-2789.]). For the use of diiodo­imidazoles as starting compounds for ligand synthesis, see: Haruki et al. (1965[Haruki, E., Izumita, S. & Imoto, E. (1965). Nippon Kagaku Zasshi, 86, 942-946.]); Ito & Uedaira (2004[Ito, T. & Uedaira, S. (2004). Jpn. Kokai Tokkyo Koho, JP 2004123550.]); Kim et al. (1999[Kim, G., Kang, S., Ryu, Y., Keum, G. & Seo, M. J. (1999). Synth. Commun. 29, 507-512.]); Zhang et al. (2006[Zhang, J., Zhang, Y., Schnatter, W. F. K. & Herndon, J. W. (2006). Organometallics, 25, 1279-1284.]). For the synthetic procedure, see: Garden et al. (2001[Garden, S. J., Torres, J. C., de Souza Melo, S. C., Lima, A. S., Pinto, A. C. & Lima, E. L. S. (2001). Tetrahedron Lett. 42, 2089-2092.]); Ishihara & Togo (2006[Ishihara, M. & Togo, H. (2006). Synlett, pp. 227-230.]). For typical bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6I2N2

  • Mr = 395.96

  • Orthorhombic, A b a 2

  • a = 31.0150 (6) Å

  • b = 17.5010 (5) Å

  • c = 8.0461 (9) Å

  • V = 4367.4 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 5.72 mm−1

  • T = 150 K

  • 0.45 × 0.16 × 0.07 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.256, Tmax = 0.675

  • 20468 measured reflections

  • 4914 independent reflections

  • 4499 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.051

  • S = 1.04

  • 4914 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2233 Friedel pairs

  • Flack parameter: 0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.86 2.01 2.845 (5) 165
N4—H4⋯N1 0.86 2.02 2.848 (6) 162
Symmetry code: (i) [x, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Enraf-Nonius, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Halogenated derivatives of heterocycles are important starting compounds for building new heterocyclic chiral ligands via cross-coupling reactions. In recent times 4,5-diiodoimidazole and its derivatives were used for the preparation of various disubstituted 4,5-dicarbaimidazoles (Zhang et al., 2006; Ito & Uedaira, 2004; Kim et al., 1999; Haruki et al., 1965). To the best of our knowledge, there are a couple of structures of dihalogenated imidazoles determined by X-ray diffraction methods, but the 4,5-diido-1H-imidazole structure as the most versatile and simpliest member of the series is missing. Compound I (Scheme 1) was separated as a byproduct from a reaction described by Ishihara (Ishihara & Togo, 2006) but is usually prepared by the method of Garden (Garden et al., 2001). The title compound crystallizes (Fig. 1) in an orthorhombic space group with two independent molecules in the unit cell (Fig. 2). Both molecules reveal similar structural behavior showing two planar conjugated rings – phenyl and imidazolyl. The interplanar angles between imidazolyl and phenyl planes are 16.35 (3)° and 17.48 (6)°, respectively. The formation of infinite chains is provided by the connection of both types of molecules via N–H···N hydrogen bridges. The linear chains interact via the iodine atoms at neighbouring imidazole moieties. In contrast to typical C–I bond lenghts of ca. 2.095 Å (Allen et al., 1987) which is the same for monoiodoimidazoles, the C–I separations in diiodoimidazoles significantly differ between ca. 2.05 and 2.09 Å (Panday et al., 2000; Terinek & Vasella, 2003). This phenomenon is also seen in one of the molecules of I, where the C11–I3 bond length is 2.075 (5) Å and the C12–I4 bond located next to the N–H function is shortened to 2.058 (5) Å. On the other hand, in the first molecule both C–I bond lenghts (2.051 (5) and 2.058 (5) Å) are almost identical and thus comparable to the same parameters found in compounds containing the 4,5-diidoimidazolium ion (Mukai & Nishikawa, 2010a,b). Only one iodine atom I1 is located in the same plane defined by the imidazole ring, while the others show deviations of 0.07-0.148 Å. Bond lenghts between the atoms forming the imidazole rings are comparable to literature values (Allen et al., 1987) except of C1–N2 which is elongated by 0.02 Å and C10–N3 which is slightly shortened.

Related literature top

For the structures of various related compounds, see: Delest et al. (2008); Poverlein et al. (2007); Panday et al. (2000); Phillips et al. (1997); Terinek & Vasella (2003); Mukai & Nishikawa (2010a,b); Noland et al. (2003); Dou & Weiss (1992); Nagatomo et al. (1995). For the use of diiodoimidazoles as starting compounds for ligand synthesis, see: Haruki et al. (1965); Ito & Uedaira (2004); Kim et al. (1999); Zhang et al. (2006). For the synthetic procedure, see: Garden et al. (2001); Ishihara & Togo (2006). For typical bond lengths, see: Allen et al. (1987).

Experimental top

The title compound I was isolated in 30% yield as a byproduct from the reaction mixture of 2-phenyl-1H-imidazole-4-carbaldehyde with ethan-1,2-diamine, iodine and potassium carbonate in tert-butylalcohol, according to Ishihara (Ishihara & Togo, 2006) in order to prepare 2'-phenyl-4,5-dihydro-1H,1'H-2,4'-biimidazole. The reaction mixture was separated by the help of column chromatography on silicagel (ethyl acetate, hexane and dichloromethane – 1:3:10). Further crystallization from dichloromethane gave pure I. The identity and purity of I was confirmed by the same melting point, 1H NMR and mass spectra patterns as published elsewhere (Garden et al., 2001). Single crystals of I were obtained by slow vapour diffussion of hexane into a solution of I in dichloromethane.

Refinement top

All hydrogen atoms were discernible in the difference electron density map. However, all hydrogen atoms were placed into idealized positions and refined riding on their parent C or N atoms, with N–H = 0.86 Å, C–H = 0.93 Å for aromatic H atoms, with U(H) = 1.2Ueq(C/N) for the NH group and U(H) = 1.5Ueq(C/N) for other H atoms, respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of one of the independent molecules of the title compound with the displacement ellipsoids shown at the 50% probability level. H atoms are shown with arbitrary radii.
[Figure 2] Fig. 2. View of the crystal structure down the c axis showing the hydrogen bond interactions.
4,5-Diiodo-2-phenyl-1H-imidazole top
Crystal data top
C9H6I2N2Dx = 2.409 Mg m3
Mr = 395.96Melting point: 472 K
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 20579 reflections
a = 31.0150 (6) Åθ = 1–27.5°
b = 17.5010 (5) ŵ = 5.72 mm1
c = 8.0461 (9) ÅT = 150 K
V = 4367.4 (5) Å3Needle, colourless
Z = 160.45 × 0.16 × 0.07 mm
F(000) = 2880
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
4914 independent reflections
Radiation source: fine-focus sealed tube4499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.3°
ϕ and ω scans to fill the Ewald sphereh = 3940
Absorption correction: gaussian
(Coppens, 1970)
k = 2219
Tmin = 0.256, Tmax = 0.675l = 910
20468 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0196P)2 + 8.5806P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4914 reflectionsΔρmax = 0.63 e Å3
235 parametersΔρmin = 0.63 e Å3
1 restraintAbsolute structure: Flack (1983), 2233 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C9H6I2N2V = 4367.4 (5) Å3
Mr = 395.96Z = 16
Orthorhombic, Aba2Mo Kα radiation
a = 31.0150 (6) ŵ = 5.72 mm1
b = 17.5010 (5) ÅT = 150 K
c = 8.0461 (9) Å0.45 × 0.16 × 0.07 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
4914 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
4499 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 0.675Rint = 0.058
20468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.051Δρmax = 0.63 e Å3
S = 1.04Δρmin = 0.63 e Å3
4914 reflectionsAbsolute structure: Flack (1983), 2233 Friedel pairs
235 parametersAbsolute structure parameter: 0.01 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I30.239603 (10)0.127609 (18)0.00147 (5)0.02406 (8)
I20.185474 (11)0.465127 (18)0.86344 (5)0.02557 (9)
I10.142369 (12)0.262855 (18)0.73764 (5)0.02639 (9)
I40.225974 (10)0.324363 (17)0.26443 (4)0.02035 (8)
N10.11736 (13)0.3687 (2)0.4558 (5)0.0172 (9)
N30.14573 (13)0.1439 (2)0.0814 (5)0.0160 (8)
C140.05141 (17)0.1305 (3)0.0519 (7)0.0210 (12)
H140.06830.10400.02420.025*
C90.11213 (17)0.5450 (3)0.2022 (6)0.0217 (12)
H90.13210.57410.26100.026*
C30.15163 (16)0.4339 (3)0.6553 (6)0.0166 (10)
C10.11925 (16)0.4415 (3)0.4126 (6)0.0153 (10)
C40.10087 (15)0.4731 (2)0.2585 (7)0.0178 (10)
C130.07108 (16)0.1796 (3)0.1643 (6)0.0151 (10)
C110.18543 (15)0.1775 (3)0.1070 (6)0.0163 (10)
C20.13758 (15)0.3637 (3)0.6074 (6)0.0146 (10)
C120.18168 (16)0.2429 (3)0.1949 (6)0.0170 (10)
C100.11796 (16)0.1907 (3)0.1591 (6)0.0150 (10)
N20.13961 (13)0.4833 (2)0.5321 (5)0.0184 (9)
H20.14410.53180.52970.022*
C180.04545 (16)0.2180 (3)0.2794 (7)0.0219 (11)
H180.05820.25110.35560.026*
C50.07161 (18)0.4297 (3)0.1697 (7)0.0269 (13)
H50.06370.38150.20790.032*
C160.01789 (19)0.1579 (3)0.1692 (8)0.0301 (14)
H160.04760.15070.17140.036*
N40.13889 (12)0.2501 (2)0.2280 (6)0.0147 (8)
H40.12730.28670.28340.018*
C170.00127 (17)0.2077 (3)0.2786 (8)0.0296 (13)
H170.01560.23430.35480.035*
C150.00750 (18)0.1195 (3)0.0545 (8)0.0284 (13)
H150.00530.08650.02150.034*
C80.0937 (2)0.5739 (3)0.0577 (7)0.0313 (14)
H80.10050.62300.02240.038*
C70.0656 (2)0.5299 (3)0.0314 (8)0.0343 (15)
H70.05420.54870.13020.041*
C60.0541 (2)0.4581 (3)0.0261 (8)0.0347 (15)
H60.03500.42850.03520.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I30.02447 (18)0.02458 (16)0.02313 (18)0.00572 (12)0.00691 (17)0.00173 (16)
I20.03117 (19)0.02441 (17)0.02114 (18)0.00247 (14)0.01031 (16)0.00504 (16)
I10.0322 (2)0.01704 (15)0.0299 (2)0.00235 (14)0.00951 (16)0.00849 (16)
I40.01828 (16)0.01997 (15)0.02279 (17)0.00410 (12)0.00100 (14)0.00314 (15)
N10.019 (2)0.012 (2)0.020 (2)0.0002 (16)0.0024 (17)0.0020 (17)
N30.022 (2)0.0113 (19)0.014 (2)0.0012 (16)0.0021 (17)0.0004 (17)
C140.023 (3)0.019 (3)0.021 (3)0.003 (2)0.003 (2)0.002 (2)
C90.030 (3)0.018 (3)0.017 (3)0.003 (2)0.001 (2)0.000 (2)
C30.016 (2)0.017 (2)0.017 (3)0.0009 (19)0.002 (2)0.001 (2)
C10.019 (3)0.013 (2)0.014 (3)0.0019 (19)0.0007 (19)0.0012 (19)
C40.020 (2)0.019 (2)0.014 (3)0.0032 (19)0.002 (2)0.000 (2)
C130.021 (3)0.011 (2)0.014 (3)0.0038 (18)0.006 (2)0.0051 (19)
C110.019 (2)0.013 (2)0.017 (3)0.0060 (18)0.004 (2)0.001 (2)
C20.015 (2)0.015 (2)0.014 (3)0.0024 (18)0.003 (2)0.0008 (19)
C120.018 (3)0.014 (2)0.019 (3)0.0025 (19)0.001 (2)0.001 (2)
C100.024 (3)0.010 (2)0.012 (2)0.0031 (18)0.001 (2)0.0004 (18)
N20.024 (2)0.0103 (19)0.021 (3)0.0011 (16)0.0028 (18)0.0033 (17)
C180.022 (3)0.018 (2)0.027 (3)0.0016 (19)0.001 (2)0.001 (2)
C50.028 (3)0.019 (3)0.034 (3)0.003 (2)0.008 (2)0.005 (2)
C160.020 (3)0.037 (3)0.033 (4)0.008 (2)0.002 (3)0.001 (3)
N40.017 (2)0.0127 (18)0.014 (2)0.0015 (15)0.0053 (17)0.0043 (17)
C170.017 (3)0.034 (3)0.038 (4)0.001 (2)0.002 (3)0.002 (3)
C150.023 (3)0.031 (3)0.031 (3)0.006 (2)0.010 (2)0.000 (2)
C80.045 (4)0.024 (3)0.026 (3)0.006 (2)0.009 (3)0.007 (2)
C70.047 (4)0.030 (3)0.026 (4)0.003 (3)0.015 (3)0.009 (3)
C60.044 (4)0.030 (3)0.030 (4)0.013 (2)0.020 (3)0.004 (3)
Geometric parameters (Å, º) top
I3—C112.075 (5)C13—C101.467 (7)
I2—C32.051 (5)C11—C121.350 (7)
I1—C22.058 (5)C12—N41.360 (6)
I4—C122.058 (5)C10—N41.345 (6)
N1—C11.323 (6)N2—H20.8600
N1—C21.374 (6)C18—C171.382 (7)
N3—C101.343 (6)C18—H180.9300
N3—C111.379 (6)C5—C61.370 (8)
C14—C151.376 (8)C5—H50.9302
C14—C131.388 (7)C16—C171.374 (8)
C14—H140.9301C16—C151.388 (9)
C9—C41.381 (7)C16—H160.9299
C9—C81.391 (8)N4—H40.8600
C9—H90.9301C17—H170.9300
C3—C21.360 (7)C15—H150.9299
C3—N21.366 (6)C8—C71.367 (8)
C1—N21.363 (6)C8—H80.9301
C1—C41.472 (7)C7—C61.385 (8)
C4—C51.383 (7)C7—H70.9299
C13—C181.393 (7)C6—H60.9299
C1—N1—C2105.9 (4)N4—C10—C13124.7 (4)
C10—N3—C11104.1 (4)C1—N2—C3107.4 (4)
C15—C14—C13120.8 (5)C1—N2—H2126.0
C15—C14—H14119.8C3—N2—H2126.6
C13—C14—H14119.3C17—C18—C13120.0 (5)
C4—C9—C8120.1 (5)C17—C18—H18120.3
C4—C9—H9119.9C13—C18—H18119.8
C8—C9—H9120.0C6—C5—C4119.8 (5)
C2—C3—N2106.2 (4)C6—C5—H5120.3
C2—C3—I2129.5 (4)C4—C5—H5120.0
N2—C3—I2124.3 (3)C17—C16—C15119.2 (5)
N1—C1—N2110.6 (4)C17—C16—H16120.2
N1—C1—C4124.5 (4)C15—C16—H16120.6
N2—C1—C4124.9 (4)C10—N4—C12108.6 (4)
C9—C4—C5119.8 (5)C10—N4—H4126.0
C9—C4—C1121.4 (4)C12—N4—H4125.4
C5—C4—C1118.9 (4)C16—C17—C18121.0 (5)
C14—C13—C18118.7 (5)C16—C17—H17119.8
C14—C13—C10119.9 (4)C18—C17—H17119.2
C18—C13—C10121.4 (4)C14—C15—C16120.2 (5)
C12—C11—N3111.2 (4)C14—C15—H15120.0
C12—C11—I3129.8 (4)C16—C15—H15119.7
N3—C11—I3118.9 (3)C7—C8—C9119.8 (5)
C3—C2—N1109.9 (4)C7—C8—H8120.4
C3—C2—I1127.4 (4)C9—C8—H8119.9
N1—C2—I1122.6 (3)C8—C7—C6119.9 (5)
C11—C12—N4105.4 (4)C8—C7—H7119.4
C11—C12—I4132.2 (4)C6—C7—H7120.6
N4—C12—I4122.3 (3)C5—C6—C7120.6 (5)
N3—C10—N4110.7 (4)C5—C6—H6119.9
N3—C10—C13124.6 (4)C7—C6—H6119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.012.845 (5)165
N4—H4···N10.862.022.848 (6)162
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H6I2N2
Mr395.96
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)150
a, b, c (Å)31.0150 (6), 17.5010 (5), 8.0461 (9)
V3)4367.4 (5)
Z16
Radiation typeMo Kα
µ (mm1)5.72
Crystal size (mm)0.45 × 0.16 × 0.07
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.256, 0.675
No. of measured, independent and
observed [I > 2σ(I)] reflections
20468, 4914, 4499
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.051, 1.04
No. of reflections4914
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.63
Absolute structureFlack (1983), 2233 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.012.845 (5)164.7
N4—H4···N10.862.022.848 (6)161.7
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Czech Science Foundation (Project P207/12/0223) for the financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDelest, B., Nshimyumukiza, P., Fasbender, O., Tinant, B., Marchand-Brynaert, J., Darro, F. & Robiette, R. (2008). J. Org. Chem. 73, 6816–6823.  CrossRef PubMed CAS Google Scholar
First citationDou, S. & Weiss, A. (1992). Z. Naturforsch. Teil A, 47, 177–181.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarden, S. J., Torres, J. C., de Souza Melo, S. C., Lima, A. S., Pinto, A. C. & Lima, E. L. S. (2001). Tetrahedron Lett. 42, 2089–2092.  Web of Science CrossRef CAS Google Scholar
First citationHaruki, E., Izumita, S. & Imoto, E. (1965). Nippon Kagaku Zasshi, 86, 942–946.  CrossRef CAS Google Scholar
First citationHooft, R. W. (1998). COLLECT. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationIshihara, M. & Togo, H. (2006). Synlett, pp. 227–230.  Google Scholar
First citationIto, T. & Uedaira, S. (2004). Jpn. Kokai Tokkyo Koho, JP 2004123550.  Google Scholar
First citationKim, G., Kang, S., Ryu, Y., Keum, G. & Seo, M. J. (1999). Synth. Commun. 29, 507–512.  CrossRef CAS Google Scholar
First citationMukai, T. & Nishikawa, K. (2010a). Anal. Sci. X-ray Struct. Anal. Online, 26, 31–32.  CAS Google Scholar
First citationMukai, T. & Nishikawa, K. (2010b). Solid State Sci. 12, 783–788.  CrossRef CAS Google Scholar
First citationNagatomo, S., Takeda, S., Tamura, H. & Nakamura, N. (1995). Bull. Chem. Soc. Jpn, 68, 2783–2789.  CrossRef CAS Google Scholar
First citationNoland, W. E., Cole, K. P. & Britton, D. (2003). Acta Cryst. E59, o458–o460.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPanday, N., Canac, Y. & Vasella, A. (2000). Helv. Chim. Acta, 83, 58–79.  CrossRef CAS Google Scholar
First citationPhillips, J. G., Fadnis, L. & Williams, D. R. (1997). Tetrahedron Lett. 38, 7835–7838.  CrossRef CAS Google Scholar
First citationPoverlein, C., Jacobi, N., Mayer, P. & Lindel, T. (2007). Synthesis, pp. 3620–3626.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerinek, M. & Vasella, A. (2003). Helv. Chim. Acta, 86, 3482–3509.  CrossRef CAS Google Scholar
First citationZhang, J., Zhang, Y., Schnatter, W. F. K. & Herndon, J. W. (2006). Organometallics, 25, 1279–1284.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o553-o554
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds